
Homework	10	Solutions	
	
Chapter	9,	Problem	2.	
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3a. In the hcp structure there is one atom whose z coordinate is 0 and one at 
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so that by the same argument as in Problem 9.4 the corresponding component  of the crystal potential 

is zero. 
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c. The two valence electrons can just fill the first BZ. All we need is an adequate energy gap at the zone 

boundary and for simple hex. there is no reason against a gap. 

 

d. In hcp there will be no gap (at least in lowest order) on the top and bottom faces of the BZ, by the 

argument of part a. 
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c. The two valence electrons can just fill the first BZ. All we need is an adequate energy gap at the zone 

boundary and for simple hex. there is no reason against a gap. 

 

d. In hcp there will be no gap (at least in lowest order) on the top and bottom faces of the BZ, by the 

argument of part a. 
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b. The electron moves in a direction normal to the Fermi surface -- more or less in a straight line if the 

Fermi surface is close to planar in the region of interest. The magnetic field puts a wiggle on the motion, 

but the field does not make the electron move in a helix, contrary to the behavior of a free electron. 

 

6a.  

 

 

Region I: 

 

2 2

02

2 2

h d
U

2m dx

h k
A cos kx ;

2m

) )

)

* +(
! ! # ,- .
/ 0

(
# , # 0U (*)!

     

 

Region II:  

 
2 2

2

2 2
qx

h d

2m dx

h q
B e ;

2m

) )

) !

(
! # ,

(
# , # !

    (*)  

 

Boundary condition 
1 d
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k tan (ka / 2) q ,#      (**) 

 

with k and q related to , as above. 

 

b. The lazy way here is to show that the ,’s in the equations marked (*) above are equal when k and q are 

connected by (**), with , = –0.45 as read off Fig. 20. This is indeed so. 
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8. Write (17) as , where 0H H H# ' 1 1 (h / m) k pH (# 3
! !

. Then (18) is an eigenfunction of  with 

the eigenvalue . In this representation the diagonal matrix element of  is equal to 

 In a cubic crystal  will be even or odd with respect to the 

inversion operation , but  is an odd operator. It follows that the diagonal matrix element 

vanishes, and there is no first-order correction to the energy. The function  to first order in  is 
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and the energy to second order is 

 
2

2 2

n n

n j

| n0 | k p | j0 |
(k) (0) (hk) / 2m (h / m) .

(0) (0)j

6 3 7
8( (, # , ' ' 9

, ! ,
! !

!
 

 

The effective mass ratio is the coefficient of , or 
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where the summation is zero unless n = m, when it is equal to N. 
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c. Let us set 
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