Homework 10 Solutions

Chapter 9, Problem 2.

b.

$$
\begin{aligned}
\mathrm{N} & =2 \times \frac{\pi \mathrm{k}_{\mathrm{F}}^{2}}{(2 \pi / \mathrm{k})^{2}} \\
\mathrm{n} & =\mathrm{N} / \mathrm{L}^{2}=\mathrm{k}_{\mathrm{F}}^{2} / 2 \pi \\
\mathrm{k}_{\mathrm{F}} & =\sqrt{2 \pi \mathrm{n}} \\
\mathrm{n} & =\frac{1}{8} \times 10^{16} \mathrm{els} / \mathrm{cm}^{2} \\
\mathrm{k}_{\mathrm{F}} & =0.89 \times 10^{8} \mathrm{~cm}^{-1}
\end{aligned}
$$

c.

Problem 7a.
$\Delta\left(\frac{1}{\mathrm{H}}\right)=\frac{2 \pi \mathrm{e}}{\mathrm{hcS}}$, where $\mathrm{S}=\pi \mathrm{k}_{\mathrm{F}}^{2}$, with $\mathrm{k}_{\mathrm{F}}=0.75 \times 10^{8} \mathrm{~cm}^{-1}$ from Table 6.1, for potassium. Thus

$$
\Delta\left(\frac{1}{\mathrm{H}}\right) \simeq \frac{2}{137 \mathrm{k}_{\mathrm{F}}^{2} \mathrm{e}} \simeq 0.55 \times 10^{-8} \mathrm{G}^{-1} .
$$

b.

$$
\begin{aligned}
& \omega_{\mathrm{c}} \mathrm{R}=\mathrm{v}_{\mathrm{F}} ; \quad \mathrm{R}=\frac{\mathrm{v}_{\mathrm{F}} \mathrm{mc}}{\mathrm{eB}}=\frac{h \mathrm{k}_{\mathrm{F}} \mathrm{c}}{\mathrm{eB}} \\
& \simeq 0.5 \times 10^{-3} \mathrm{~cm} \\
& \pi \mathrm{R}^{2} \simeq 0.7 \times 10^{-6} \mathrm{~cm}^{2} .
\end{aligned}
$$

Chapter 10.
1a. $\frac{d^{2} B}{d x^{2}}=\frac{1}{\lambda^{2}} B$; this is the London equation. The proposed solution is seen directly to satisfy this and to satisfy the boundary conditions $B\left(\pm \frac{1}{2} \delta\right)=B_{a}$. (b) For $\delta \ll \lambda_{L}$,

$$
\begin{aligned}
\cosh \frac{x}{\lambda} & =1+\frac{1}{2}\left(\frac{\mathrm{x}}{\lambda_{\mathrm{L}}}\right)^{2}+\ldots \\
\cosh \frac{\delta}{2 \lambda} & =1+\frac{1}{2}\left(\frac{\delta}{2 \lambda}\right)^{2}+\ldots
\end{aligned}
$$

therefore $\mathrm{B}(\mathrm{x})=\mathrm{B}_{\mathrm{a}}-\mathrm{B}_{\mathrm{a}}\left(1 / 8 \lambda^{2}\right)\left(\delta^{2}-4 \mathrm{x}^{2}\right)$.

