
Homework	12	Solutions.

	2.	Mott	Transition	of	excitons.	
	
There	are	probably	different	ways	to	approach	this	question.	I	went	back	to	Chapter	
10,	equation	44,	where	the	Mott	transition	was	first	discussed.		This	potential	was	
for	the	interaction	of	an	electron	with	a	proton	(in	hydrogen.)	The	unscreened	
potential	gives	hydrogen	eigenstates.			
	
I	will	modify	the	unscreened	potential	to	give	the	observed	energy,	14	meV,	instead	
of	13.1	eV	(for	hydrogen.)	There	is	also	a	factor	of	2	because	we	take	the	electron	to	
have	its	usual	mass	and	the	hole	the	same,	so	the	reduced	mass	is	half	what	it	is	for	
hydrogen.		
	



The	bound	state	energy	will	vary	as	1/ε2,	so	the	effective	dielectric	constant	is		
	

ε ≈
13.1eV

28×10−3eV
= 21.6 	

	
U(r)	in	eqn.	14-44	must	be	reduced	by	this	same	factor.	We	can	expect	a	bound	state	
if	the	potential	well	has	the	same	integrated	depth.	(In	other	words,	a	wide	shallow	
well	has	a	bound	state,	as	does	a	narrow	deep	one.)	We	just	made	the	well	shallower	
by	a	factor	of	21.6;	if	we	make	it	wider	by	the	same	factor,	we	should	preserve	a	
bound	state.		1/ks	is	a	measure	of	the	width	of	the	well,	so	we	will	have	a	bound	
state	when	ks	<	(1.19/a0)/21.6.	
	
From	14-34,	ks	2	~	4n01/3/a0,	where	n0	is	the	exciton	concentration.	Combining	
expressions	and	taking	the	Bohr	radius	as	about	1	Å,	I	find	the	critical	concentration	
to	be	about	4x1020	excitons/m3,	=	4x1014	excitons/cm3.	
	
Another	approach	would	be	to	just	estimate	the	radius	of	the	exciton	orbit.	The	Bohr	
radius	of	a	hydrogenic	system	depends	linearly	on	the	dielectric	constant,	so	the	
radius	should	be	about	21.6	Å,	and	the	overlap	density	should	be	1/(21.6	Å)3	or	
about	1026	excitons/m3.		This	is	surely	an	overestimate,	however,	because	the	Mott	
theory	gives	a	conducting	system	when	ac	=	2.78a0,	i.e.	at	a	20-fold	lower	density	
than	“overlap”.	
	
Chapter	14:	
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7. Eq. (53) becomes  where P is the ionic contribution to the 

polarization. Then (55) becomes 
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One root at K = 0 is 
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where % (0) is given by (58) with & = 0. 

 

8(a). 
22 15 1

pne m ( 4 ) 0.73 10  s 800(  cm) 1$ $; # # & ) # , # <T T  

 

(b) 
2 22 2 27

p p4 ne m*; m* 4 ne 4.2 10 g; m* m 4.7.$& # ) # ) & # , #  

 

9. The kinetic energy of a Fermi gas of N electrons in volume V is 
2U N(3 5) ( h 2m )(3 N V )-=# ) 2 3.  Then dU/dV = – (2/3)U/V and d

2
U/dV

2
 = (10/9)U/V

2
. 

The bulk modulus 
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The velocity of sound 1 2v (B ) ,# >  where the density n (m M) nM,> # ' !  whence 
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10. The response is given, with > = 1/*, by 
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The conductivity ; does not enter this equation directly, although it may be written as ; 

= &p
2*/4). For order of magnitude, 
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