Homework 2 Solutions

4. (a) This follows by forming

$$
\begin{aligned}
|\mathrm{F}|^{2} & =\frac{1-\exp [-\mathrm{iM}(\mathrm{a} \cdot \Delta \mathrm{k})]}{1-\exp [-\mathrm{i}(\mathrm{a} \cdot \Delta \mathrm{k})]} \cdot \frac{1-\exp [\mathrm{iM}(\mathrm{a} \cdot \Delta \mathrm{k})]}{1-\exp [\mathrm{i}(\mathrm{a} \cdot \Delta \mathrm{k})]} \\
& =\frac{1-\cos \mathrm{M}(\mathrm{a} \cdot \Delta \mathrm{k})}{1-\cos (\mathrm{a} \cdot \Delta \mathrm{k})}=\frac{\sin ^{2} \frac{1}{2} \mathrm{M}(\mathrm{a} \cdot \Delta \mathrm{k})}{\sin ^{2} \frac{1}{2}(\mathrm{a} \cdot \Delta \mathrm{k})}
\end{aligned}
$$

(b) The first zero in $\sin \frac{1}{2} \mathrm{M} \varepsilon$ occurs for $\varepsilon=2 \pi / \mathrm{M}$. That this is the correct consideration follows from

$$
\sin \mathrm{M}\left(\pi \mathrm{~h}+\frac{1}{2} \varepsilon\right)=\underbrace{\sin \pi \mathrm{Mh}}_{\substack{\text { zero } \\ \text { as Mh is } \\ \text { an integer }}} \cos \frac{1}{2} \mathrm{M} \varepsilon+\underbrace{\cos \pi \mathrm{Mh}}_{ \pm 1} \sin \frac{1}{2} \mathrm{M} \varepsilon
$$

5. $S\left(v_{1} v_{2} v_{3}\right)=f \sum_{j} e^{-2 \pi i\left(x_{j} v_{1}+y_{j} v_{2}+z_{j} v_{3}\right)}$

Referred to an fcc lattice, the basis of diamond is $000 ; \frac{1}{4} \frac{1}{4} \frac{1}{4}$. Thus in the product

$$
\mathrm{S}\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3}\right)=\mathrm{S}(\text { fcc lattice }) \times \mathrm{S} \text { (basis) },
$$

we take the lattice structure factor from (48), and for the basis

$$
S(\text { basis })=1+\mathrm{e}^{-\mathrm{i} \frac{1}{2} \pi\left(\mathrm{v}_{1}+\mathrm{v}_{2}+\mathrm{v}_{3}\right)}
$$

Now $\mathrm{S}(\mathrm{fcc})=0$ only if all indices are even or all indices are odd. If all indices are even the structure factor of the basis vanishes unless $v_{1}+v_{2}+v_{3}=4 n$, where n is an integer. For example, for the reflection (222) we have S (basis) $=1+\mathrm{e}^{-\mathrm{i} 3 \pi}=0$, and this reflection is forbidden.
6. $\mathrm{f}_{\mathrm{G}}=\int_{0}^{\infty} 4 \pi \mathrm{r}^{2}\left(\pi \mathrm{a}_{0}{ }^{3} \mathrm{Gr}\right)^{-1} \sin \operatorname{Gr} \exp \left(-2 \mathrm{r} / \mathrm{a}_{0}\right) \mathrm{dr}$

$$
=\left(4 / G^{3} a_{0}{ }^{3}\right) \int d x x \sin x \exp \left(-2 x / \mathrm{Ga}_{0}\right)
$$

$$
=\left(4 / \mathrm{G}^{3} \mathrm{a}_{0}{ }^{3}\right)\left(4 / \mathrm{Ga}_{0}\right) /\left(1+\mathrm{r} / \mathrm{G}^{2} \mathrm{a}_{0}{ }^{2}\right)^{2}
$$

$$
16 /\left(4+\mathrm{G}^{2} \mathrm{a}_{0}{ }^{2}\right)^{2}
$$

The integral is not difficult; it is given as Dwight 860.81 . Observe that $\mathrm{f}=1$ for $\mathrm{G}=0$ and $\mathrm{f} \propto 1 / \mathrm{G}^{4}$ for $\mathrm{Ga}_{0} \gg 1$.
7. (a) The basis has one atom A at the origin and one atom B at $\frac{1}{2} a$. The single Laue equation $\mathbf{a} \cdot \Delta \mathbf{k}=2 \pi \times$ (integer) defines a set of parallel planes in Fourier space. Intersections with a sphere are a set of circles, so that the diffracted beams lie on a set of cones. (b) $S(n)=f_{A}+f_{B} e^{-i \pi n}$. For n odd, $S=f_{A}$ f_{B}; for n even, $S=f_{A}+f_{B}$. (c) If $f_{A}=f_{B}$ the atoms diffract identically, as if the primitive translation vector were $\frac{1}{2} \mathrm{a}$ and the diffraction condition $\left(\frac{1}{2} \mathbf{a} \cdot \Delta \mathbf{k}\right)=2 \pi \times$ (integer).

