HW8 Solutions

3. (a) At k = 0 the determinantal equation is (P/Ka) sin Ka + cos Ka = 1. In the limit of small positive P this equation will have a solution only when Ka \ll 1. Expand the sine and cosine to obtain in lowest order $P \simeq \frac{1}{2} (Ka)^2$. The energy is $\varepsilon = \hbar^2 K^2 / 2m \simeq \hbar^2 P / ma^2$. (b) At k = π/a the determinantal equation is (P/Ka) sin Ka + cos Ka = -1. In the same limit this equation has solutions Ka = $\pi + \delta$, where $\delta \ll 1$. We expand to obtain $(P/\pi)(-\delta) + (-1 + \frac{1}{2}\delta^2) = -1$, which has the solution $\delta = 0$ and $\delta = 2P/\pi$. The energy gap is $E_g = (\hbar^2/2ma^2)(2\pi\delta) \simeq (\hbar^2/2ma^2)(4P)$.

4. (a) There are two atoms in the basis, and we label them a and b. Then the crystal potential may be written as $U = U_1 + U_2 = U_1(\underline{r}) + U_1\left(x + \frac{1}{4}a, y + \frac{1}{4}a, z + \frac{1}{4}a\right)$ and the Fourier transform has

components $U_{\tilde{G}} = U_{1\tilde{G}} + U_{2\tilde{G}} = U_{1\tilde{G}} \left(1 + e^{i(G_x + G_y + G_z)\frac{1}{4}a} \right)$. If $\tilde{G} = 2A\hat{x}$, then the exponential is

 $e^{i\frac{1}{2}Aa} = e^{i\pi} = -1$, and $U_{G=2A} = 0$, so that this Fourier component vanishes. Note that the quantity in parentheses above is just the structure factor of the basis. (b) This follows directly from (44) with U set equal to zero. In a higher order approximation we would go back to Eq. (31) where any non-vanishing U_G enters.

6. $U(x,y) = -U[e^{i(2\pi/a)(x+y)} + other sign combinations of \pm x \pm y]$. The potential energy contains the four reciprocal lattice vectors (2 π/a) (± 1 ; ± 1). At the zone corner the wave function $e^{i(\pi/a)(x+y)}$ is mixed with $e^{-i(\pi/a)(x+y)}$. The central equations are

$$(\lambda - \varepsilon) C \left[\frac{\pi}{a}; \frac{\pi}{a} \right] - U C \left[-\frac{\pi}{a}; -\frac{\pi}{a} \right] = 0;$$
$$(\lambda - \varepsilon) C \left[-\frac{\pi}{a}; -\frac{\pi}{a} \right] - U C \left[\frac{\pi}{a}; \frac{\pi}{a} \right] = 0,$$

where $\lambda = 2(h^2/2m)(\pi/a)^2$. The gap is 2U.