HW8 Solutions

3. (a) At $k=0$ the determinantal equation is $(P / K a) \sin K a+\cos K a=1$. In the limit of small positive P this equation will have a solution only when $\mathrm{Ka} \ll 1$. Expand the sine and cosine to obtain in lowest order $\mathrm{P} \simeq \frac{1}{2}(\mathrm{Ka})^{2} . \quad$ The energy \quad is $\quad \varepsilon=$ $\mathrm{K}^{2} \mathrm{~K}^{2} / 2 \mathrm{~m} \simeq \mathrm{~K}^{2} \mathrm{P} / \mathrm{ma}^{2}$. (b) At $\mathrm{k}=\pi / \mathrm{a}$ the determinantal equation is $(\mathrm{P} / \mathrm{Ka}) \sin \mathrm{Ka}+\cos \mathrm{Ka}=-1$. In the same limit this equation has solutions $\mathrm{Ka}=\pi+\delta$, where $\delta \ll 1$. We expand to obtain $(\mathrm{P} / \pi)(-\delta)+\left(-1+\frac{1}{2} \delta^{2}\right)=-1$, which has the solution $\delta=0$ and $\delta=2 \mathrm{P} / \pi$. The energy gap is $\mathrm{E}_{\mathrm{g}}=\left(\mathrm{h}^{2} / 2 \mathrm{ma}^{2}\right)(2 \pi \delta) \simeq\left(\mathrm{h}^{2} / 2 \mathrm{ma}^{2}\right)(4 \mathrm{P})$.
4. (a) There are two atoms in the basis, and we label them a and b. Then the crystal potential may be written as $\mathrm{U}=\mathrm{U}_{1}+\mathrm{U}_{2}=\mathrm{U}_{1}(\underset{\sim}{r})+\mathrm{U}_{1}\left(\mathrm{x}+\frac{1}{4} \mathrm{a}, \mathrm{y}+\frac{1}{4} \mathrm{a}, \mathrm{z}+\frac{1}{4} \mathrm{a}\right)$ and the Fourier transform has components $U_{G}=U_{1 G}+U_{2 G}=U_{1 G}\left(1+e^{i\left(G_{x}+G_{y}+G_{z}\right) \frac{1}{4} a}\right)$. If $\underset{\sim}{G}=2 A \underset{\sim}{\hat{x}}$, then the exponential is $\mathrm{e}^{\mathrm{i} \frac{1}{2} \mathrm{Aa}}=\mathrm{e}^{\mathrm{i} \pi}=-1$, and $\mathrm{U}_{\mathrm{G}=2 \mathrm{~A}}=0$, so that this Fourier component vanishes. Note that the quantity in parentheses above is just the structure factor of the basis. (b) This follows directly from (44) with U set equal to zero. In a higher order approximation we would go back to Eq. (31) where any non-vanishing U_{G} enters.
5. $U(x, y)=-U\left[e^{i(2 \pi / a)(x+y)}+\right.$ other sign combinations of $\left.\pm x \pm y\right]$. The potential energy contains the four reciprocal lattice vectors $(2 \pi / \mathrm{a})(\pm 1 ; \pm 1)$. At the zone corner the wave function $\mathrm{e}^{\mathrm{i}(\pi / \mathrm{a})(\mathrm{x}+\mathrm{y})}$ is mixed with $\mathrm{e}^{-\mathrm{i}}$ ${ }^{(\pi / a)}(x+y)$. The central equations are

$$
\begin{aligned}
& (\lambda-\varepsilon) \mathrm{C}\left[\frac{\pi}{\mathrm{a}} ; \frac{\pi}{\mathrm{a}}\right]-\mathrm{UC}\left[-\frac{\pi}{\mathrm{a}} ;-\frac{\pi}{\mathrm{a}}\right]=0 \\
& (\lambda-\varepsilon) \mathrm{C}\left[-\frac{\pi}{\mathrm{a}} ;-\frac{\pi}{\mathrm{a}}\right]-\mathrm{UC}\left[\frac{\pi}{\mathrm{a}} ; \frac{\pi}{\mathrm{a}}\right]=0
\end{aligned}
$$

where $\lambda=2\left(K^{2} / 2 \mathrm{~m}\right)(\pi / \mathrm{a})^{2}$. The gap is 2 U .

