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Abstract

We determine the (non-Abelian) algebra of generalized symmetries for the
SDiff(2)Toda equation, a pde for a single function of three independent
variables, the solutions of which determine self-dual, vacuum solutions of
the Einstein field equations. This algebra is a realization of two copies of the
abstract algebra SDiff(2), along with an additional pair of elements that have
derivation-like properties on both of the copies. It contains as a subalgebra the
doubly-infinite, Abelian algebra, equivalent to the infinite hierarchy of higher
flows found by Takasaki and Takebe. An infinite prolongation of the jet bundle
for the original pde, to include all the variables allowed in their hierarchy, is
required for the presentation of this generalization. Because these symmetries
have non-zero commutators, they generate a recursion relation, allowing the
generation and description of the entire algebra.

PACS numbers: 02.30.1k, 04.20.Jb, 02.20.Tw
Mathematics Subject Classification: 37K35, 35Q58, 83C20, 35Q75

1. The SDiff(2)Toda equation, and its generalized symmetries

This equation has been of interest in general relativity in various contexts, as well as some
other fields of theoretical physics, for over 20 years. One derivation was given by one of us and
Boyer [1] in 1982, showing that it determines all self-dual, vacuum solutions of the Einstein
field equations which admit a rotational Killing vector. (The description of that metric is given
in appendix A.) The equation is a partial differential equation (pde) for a single function of
three independent variables, which may be written in the form

Qo+ €) =0 (1.1

where partial derivatives are indicated by a subscript which begins with a comma. Extensive
study during that time has uncovered various classes of solutions; however, almost all of those
describe metrics which possess additional Killing vectors as well. In particular, when the one
rotational Killing vector is part of an entire SU (2) of symmetries for the metric, sometimes
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referred to as a Bianchi IX metric, this pde is reduced to a system of ordinary differential
equations. This system has been shown to be resolved via the Painlevé VI, and Painlevé III,
functions [2]. Other details of the history of the search for solutions may be seen at this
reference [3]. Nonetheless, very few solutions of general type are known, even though there
has been a resurgence of interest in this problem in recent years [4], along with a few new
solutions described quite recently [5]. In particular the complete set of generalized symmetries
has not been known before; it is hoped that this characterization of them will facilitate the
search for additional classes of general solutions.

The complete algebra of generalized symmetries that we find may be described as the
semi-direct sum of the (unique) non-Abelian, two-dimensional Lie algebra with the direct sum
of two copies of SDif f(2), i.e., So ®{SDtff(2) & SDiff(2)}. One of the copies of
SD:if f(2) is built over s-potentials of quantities made from x-derivatives, while the other
is built over similar s-potentials of quantities made from y-derivatives, so that those two
independent variables play identical but independent roles. We can describe those subalgebras
via two arbitrary constants, for the solvable algebra, and two countable sequences of arbitrary
functions of one variable, one for each of the copies of SD<f f(2). By expanding those
functions in series about the origin, we may span those copies by two doubly-infinite sets,
{(x2|p=12..sn=012,.. }and (¥ |g=1,2,...;m =0,1,2,...}. If we then
also span the solvable algebra by the set {5}, So}, we have a (vector-space) basis for the entire
algebra, and may define the details of the construction by giving the appropriate Lie products
of this entire set:

(X5 X7} = @n—pmxpiny X X7} =0 (YR XM} = (n - pm)YIT
{X2. 8o} = (p— DX (x5, 81} =n(p— DX (50511 = 5
0, O1f = O1-
(Y. S} = -1y, {vp, 81} =n(p -1y,
(1.2)

As this is an algebra of generators for symmetries, the (vector-space) basis for the algebra
could be described in terms of tangent vectors on (the appropriate infinite prolongation of) the
manifold used to describe the pde, or, as is more usual, in terms of their characteristics [6, 7],
which are functions defined over that manifold. In that presentation, the Lie product for the
algebra elements is given in terms of the associated Poisson-type brackets for the characteristic
functions.

The Lie symmetries, i.e., those involving only the first level on the jet bundle, J!, for
this equation are well known [8], and constitute the (infinite-dimensional) subalgebra spanned
by {X'f Y, So, Si \n, m = 0,1,2,... } Another important subalgebra is Abelian and
is spanned by {Xg, Yq0 | p,gq=0,1,2,... } It is this algebra that generates the compatible
hierarchies of higher-order pde’s that are associated with this equation via the work of Takasaki
and Takebe [9]. That those entire infinite sets of pde’s are compatible is what we would now
expect, given that the associated subalgebras of generalized symmetries are Abelian and
therefore generate commuting flows on the jet bundle.

While equation (1.1) has been given quite a few names over the last 20 years, the name we
use was first used by Mikhail Saveliev [10] and also Takasaki and Takebe [9], emphasizing the
fact that some definition of ‘the symmetry algebra’ for this equation ought to be SDz f f(2).
Saveliev’s description [10] was built on his construction of continuum Lie algebras [11],
which gave them a formal, infinite series as an expression for the ‘general solution’, built over
this algebra. Unfortunately, his result seems to be too formal and not practically useful for
describing solutions so as to be able to use them in applications, but do see the more detailed
descriptions given by Bakas [10]. Takasaki’s approach was considerably more practical,
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and indeed created the infinite hierarchy of commuting flows over the (restricted) infinite
jet bundle, built over this pde at the lowest level [9]. That hierarchy provided a convenient
structure which allowed a (functional) realization of SDzif f(2), which they describe. It
is this Abelian structure, mentioned above, along with the investigations of the generalized
symmetries of the (two-dimensional) Toda lattice pde’s made by Kajiwara and Satsuma [12]
(built on the earlier work on the KdV-type hierarchy for those lattice equations of Takasaki
and Ueno [13]) that led us to investigate the generalized symmetries of this equation. In the
sections below we explain in detail how we define our jet bundles, and what is necessary to
arrive at these conclusions. We trust that this larger explication of the generalized symmetries
of the equation will eventually be helpful in a better understanding of the solution manifold
for the problem.

2. The infinite jet bundle and the earlier additional potentials

A kth order pde may be realized as a subvariety, Y, of a finite jet bundle, J® (M, N), where
M is the space of independent variables and N the space of dependent variables in the original
pde. That subvariety is most easily described, in local coordinates, by resolving the pde for
some appropriate derivative and using that equation to locally describe a surface in the jet
bundle. At such a level it is straightforward to look for the Lie symmetries as the generators
of flows in the jet bundle that remain on this surface, so that they map the solution manifold
into itself. They are just vector fields over J! (M, N), prolonged to this kth jet. However,
the search for generalized symmetries is most easily performed on the infinite prolongation
of that pde, prolonging Y to Yo, C J©, a proper subset of the complete infinite jet over
those variables, where arbitrarily many derivatives are allowed, as described for instance by
Vinogradov [6, 7, 14].

We use the obvious choices {x, y, s, Q} for coordinates on J 0 and then introduce for
each integer k > 1, a notation (), where (o) is an unordered list of length k, of the
symbols for the independent variables, x, y and s. For a given k the set of all of these
constitutes a set of coordinates for J® /J%=D: for instance at second order these coordinates
are {2y, Qyy, Qyy, 2,,Qy, Q4 }, where we do not use a comma in the subscript to simply
denote variables in the various jet bundles. This allows us to write out the total derivatives on
the entire (infinite) jet:

o0
D, =0, + Z Qoyei D0, Xi =X, ), 2.1)
k=lo|=0
where €,),: is of order k + 1 when |o| = k. We must then restrict our consideration to the
variety defined by solutions of the pde. On this variety we use the pde to make €2, a function of
the other coordinates, and then use its derivatives to remove all other coordinates which contain
one or more x and also one or more y. When this is done, we will denote these functions by the
use of ‘overtildes’ above the symbol that might otherwise have simply labelled a coordinate, on
the unrestricted bundle. We refer to these functions as ‘co-coordinates’; the infinite set of them

define Y, as a subvariety of J° (M, N). Some examples would be sz\;y = —(Qy + Q) e®
or vy = DyQyy = —(Qugs + 22 Qs + Qs + 2,Q2) 2. Therefore, at level k, the

coordinates on this restricted bundle now correspond to just those k-tuples either with £ x’s
and (k — ¢) s’sor £ y’s and (k — £) s’s, where £ varies from O to k:

on Jk/Jk_l : Quroxs oo s Quixsiss oo ssiss oo v Qymys...sv FRRR) ny...y- (22)

The total derivatives pull back to this variety, with the restricted total derivatives (denoted by
an overbar) including only derivatives with respect to these local coordinates:
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D, = 3, + Qg + Quxdg, + Uiy, + Qusdo, + Lurcda,, + Liyyda, + Lxsdo,, + Luysda,,

+ sts 89,“ + Qxxxx 89 + Qxyyy aQVU + Qxxxs aQ + Qxxss BQ + stss aQ

XXX xXxs Xss 555

oo
+ Qnys aQ}'}'Y + Qx}’ssaﬂyu toe= ax + Z Q(U)Xaﬂ(a)
(o)

D, = 8y +Q,00 + 2,00, + Q)00 + yda, + Lyrrda., + 23
o0 ( :
+Qys0q, + Qyysda, + Qysdo, +--- =0y + Z Q()y 0,
(o)
55 = BS + QS 89 + Qxxagx + stagy + st 893 + Qxxs 89“ + nysagw

oo
+ sts 352” + stsaQ” + stsaﬂw = as + Z Q(a)saﬂm

(o)
where the sum over all possible values of (o) here only includes those symbols that label
coordinates on the restricted variety, as shown in the examples above. As well, in these sums
when we consider the coefficients above of the form 4, or Q(,),, we must remember that
if the subscript does not include both an x and a y then it is simply a jet coordinate, while if it
does include both an x and a y, then the object appearing there is a co-coordinate, which must
be replaced by its explicit value in terms of the coordinates, as defined by some total derivative
of the original pde.

On the infinite jet, characteristics, ¢, for (generalized) symmetries are searched for as
functions on the prolongation up to order £, i.e., on Y, C J©, for any finite integer £ > 1.
They must be solutions of the following equation, which Vinogradov refers to as the universal
linearization equation [6]:

{D.Dy+e®[ DD, +29,D; + (s + 2})]} ¢ = 0. (2.4)

Since the pde itself is of second order, this equation will contain coordinates on the jet
that involve derivatives of €2 not higher than 2 above the highest order, ¢, on which ¢ depends.
In fact the highest orders cancel completely, so that it is actually to be resolved on Y(;.1). We

begin by first asking only for the Lie symmetries, i.e., those built on J'. The general solution
to that problem is then given by the following:

@ =Ax)Q2 +B()R2, +(as +B)Q2 + A (x) + B, (y) — 2« 2.5)

which may therefore be parametrized by two arbitrary functions of one variable, and two
additional constants. For comparison with later results, it will be convenient to create a basis
for this set of (Lie) characteristics in the following way:

+00 +00
GX|[A] = AW+ A () = Y A, X} where A(x)= ) Ax" X)=GX[x"]

n=—0oo n=—0oo

+00 +00
GYi[B] = B(y)Q2y + B, (y) = Z B,Y! where B(y) = Z B,y" Y!'=GY[y"]

n=—00 n=—00
So=5Q; —2 S| = Q4 GS(a, B) =aSy + BS;
(2.6)
which have the following commutators:
{GX1[A1], GX1[A2]} = GX [A1A) — Ay Al]
{GY\[B1], GY\[B:]} = GY\[BB; — B,Bj]
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or, equivalently,

(X1, X1} = (m— X! {yr, v} = m —nyyym!
and

{GX [A]l, GY[A]} =0 = (G X [A] S;} = {GY[B]. §;} {So, Si} =S
or, equivalently,

(xiyr=o0  {x{s)=0={r5}=0 @7
where j takes on the values 0 and 1, and the prime indicates the derivative with respect to
that functions’s argument. Each of the arbitrary functions can be seen to generate a copy of
the Virasoro algebra (without centre), namely S Dz f f(1). It will also be useful later to have

simpler names for those symmetries when the arbitrary function is chosen constant, and then
normalized to 1, i.e., for A(x) = 1 and also B(y) = 1:

X =X)=GX[1]=Q, Yi =Y =GYi[l] = Q,. (2.7a)

The set of all generalized symmetries forms a Lie algebra. When those symmetries are
expressed as vector fields over J (), the (skew-symmetric) Lie product for the symmetries is
simply the usual Lie bracket, or commutator bracket, for the vector fields. However, since
we are describing our symmetries in terms of their characteristics, the commutators must be
determined in terms of some Poisson-bracket style of calculation for functions. Therefore, let
¢ and V¥ be two arbitrary characteristics, with v, the vector field associated with ¢ and vy, the
field associated with . Furthermore, let the commutator of these two vector fields be given
by ¥,,, associated with a characteristic . Then we have the following general theorem [6]:

[V, Uyl =00 & @ =({d, ¥} =3p(¥) = 3y(¢) (2.8)
where the operator 3 maps an arbitrary function on the jet bundle, say «, into a linear (first-
order) differential operator acting on (other) functions on that infinite jet. This operator
is a sum of derivatives with respect to each of the coordinates on the jet, excluding the
independent variables, with a coefficient that depends on the differential concomitants of «.
Those coefficients are defined in the following way: we associate with each of the coordinates
on the (restricted) infinite jet a product of total derivative operators which would act on the
basic coordinate €2 to create that particular coordinate; i.e., if tlE coordinate in question is
(), then we denote that product of total derivative operators by D ;). An example would be
D, D;Q = Q,; note that (o) = 0 corresponds to just the identity operator. The corresponding
coefficient is then the result of letting that product of derivative operators act on «:

CON
BuB =Y [Dio(@)ldg,, B

o=0

— {do + [Da(@)]dg, +[ Dy (@)]dg,, + - +[Dy (@], + [ Ds(@)]og,, +---
+[Dy(a)]dg, + [DsD,(2)]dg,, +---+[D;D, ()]0, + - },3 (2.9

where « and § are two arbitrary functions on the (restricted) jet. Therefore, for two of our
characteristics, as described above in equations (2.7), we would have

{X1, X'} =3B X1 — Bxn XY, (2.10)

As was already noted, the infinite algebra of Lie symmetries has been known for some
time [8]. On the other hand, we were quite surprised when we attempted to solve this equation
by allowing ¢ to depend on coordinates on higher-level jet bundles. When this search was
carefully made, we found that there were none! This was particularly troublesome since
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we were certainly aware of the (doubly-infinite) hierarchy of commuting flows discovered
by Takasaki and Takebe [9], which should certainly be related to the desired generalized
symmetries. After considerable thought, we decided that the problem might well be analogous
to the behaviour of the generalized symmetries for the KdV equation, as explained by
Krasil’shchik [15]. In that case, there is a very well-known, infinite hierarchy of commuting
flows, which is one-to-one related with an infinite, Abelian algebra of generalized symmetries.
Even though this algebra is Abelian, there is a recursion operator for these symmetries,
originally found by Olver [14]. Krasil’shchik and Vinogradov [15] showed that one may
generalize that Abelian algebra to a larger, no-longer-Abelian algebra by prolonging the
original infinite jet with an additional set of fibres, referred to by them as coverings of J (.
Their prolongation is defined by the introduction of a potential of the original dependent
variable, i.e., a first integral of that variable, and its higher derivatives, as coordinates on these
fibres. This allowed them to use the non-zero commutators in this enlarged algebra to derive
the (already-known) form of Olver’s recursion operator.

Indeed our pde has two very obvious potentializations, based on integrals with respect to
s, that are well known in the literature:

Oy = — O

Dy=—("),=—D e D=0, @2.11)
Qay = —(e9) 55 = — [y + (2,5)*] Q=0 =0

To include these potentials in our bundle, we must prolong the jet bundle with still additional
(infinite-dimensional) fibres, which may be defined as having coordinates, for the first potential,
(D, Dy, Dyyy ..., Py, Dy, ...}, and thenalso {O, O, Oy, ..., Oy, Oy, ...}, for the second
potential. Having done this, we must also prolong the total derivatives accordingly. This gives
the following result, where, again, the sum is over the coordinates already given above as
appropriate, and we denote the prolongation of the original total derivatives with a caret over
the symbol:

N (00) (00)

Dy =D+ Y Popida,+ Y Owndo,
(0)=0 (0)=0

R (00) (00)

Dy =Dy+ Z P o)y do, + Z O0)y 0y, (2.12)
(0)=0 (0)=0

—~ . (0) (00)

Dy =D+ Y Qodo, + Y Do,
(0)=0 (0)=0

As before, those ‘derivatives’ of @, or ®, that correspond to mixed x- and y-derivatives are to
be determined by the pde’s given above, in equations (2.11), while those that correspond to
s-derivatives are of course already determined in terms of derivatives of .

The first new potential, ®, already allows two new solutions to the equation for generalized
symmetries (for our original pde), one of which involves &, and ®,,, and an arbitrary
function of x, and the other involves the same sorts of objects, involving the independent
coordinate y:

GXa[A] = 2A(0) X, + A'(x) (s, +20,) + A" (x)s
GY:[B] = 2B(y)Ys + B'(y)(sQ, +2,) + B"(y)s (2.13)
X, =0, +9,Q, Y, = q)yy+¢yg2y.



Non-Abelian infinite algebra of generalized symmetries for the SDiff(2)Toda equation 5831

As these characteristics involve simple, explicit polynomials in s, as well as their dependence
on either x or y, their commutation relations will be more complicated, and more interesting.
However, in order to compute those commutation relations we must also prolong the 3
operator to this (larger) prolonged bundle. This prolongation is slightly more complicated
than before, because the coefficient of an arbitrary derivative in the linearization operator, 3,
involves that particular action of total derivative operators that generates the new coordinate
from Q. Since Q = @y, so that ® is the first s-integral of €2, the term in the operator 3, that
involves d¢ will need as coefficient the first s-integral of «. For arbitrary functions «, this
obviously cannot be done in any closed form; however, we only need this operator to act on
characteristics of symmetries. We will see that all of our characteristics may in fact be written
as perfect s-derivatives of other quantities, and even perfect second s-derivatives, of yet other
quantities defined on the (sufficiently-prolonged) jet bundle. The existence of these second
s-derivatives will be needed when, eventually, our characteristics involve ®, which is defined

via ©;; = Q. For the moment we will simply introduce the operators 5;1 and 55_2 for this
purpose, although we will eventually become more systematic about it. We also understand
that such an ‘integration’ is not unique, and the form is even dependent on one’s choice of
coordinates. This lack of uniqueness has generated some amount of discussion in the literature.
Our approach is similar to that given by Guthrie [16], who desires that all such ‘integrations’
should in fact be re-described so that equations containing an inverse (of a differential) operator
are replaced by a system of first-order differential equations to be resolved. We begin with
some such equations here, but will use such an approach even more systematically in the next
section. We use the following differential equations to define the potentializations in that
sense:

GX\|[Al= AQ, +A' = D,{Ad, + A's} = Bf{A(ax +1A's?}

GYi[B] = BQ, + B' = D,(B®, + B's} = D.{BO, + 1B's?)

GS(a,B) = (as+ B2y —2a = D{(as + B —ad — 2uas}
=D {(as + ) — a® — as?)

GX5[A] = D,{2A(O, + 10}) + A'(sD, +20,) + $A"s?}

GY,[B] = D,{2B(®y, + ;®}) + B'(s®, +20,) + 3 B"s’}.

(2.14)

This allows us to write the appropriate prolongations for the form of the linearization operator
appropriate at this stage, where the ‘caret’ indicates that this is a prolongation of the original
operator:

< e
B3¢ =34+ (DD, @}do,, +Y_ (DD, (@)}, (2.15)
o=0 o=0

With this prolongation, the calculation of the commutators with our earlier Lie
characteristics is straightforward:

{GX,[A], GX[R]} = GX,[RA' —2AR'] & X5, X0} = (a—2p)x5"!
{GX,[A], GS(a, B)} = aGXa[Al + BGX [A] & {X5,GS(, B)} = aX§ +apX|™"
{GY5[B], GS(e, B)} = aGY>[B] + BGY|[B'] & {Y§.GS(x, B)} = a¥§ +apY|™
{GY1[B], GY\[S]} = GY>[SB' — 2BS'] & {ys,v!) = (a—2p)y5!
{GX,[A], GY1[B]} =0={GX,[Al.GY>[B]} & X5 Y"}=0={x} v}

(2.16)
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where as before, at equations (2.7), we must use arbitrary functions to parametrize our set of

characteristics by defining a basis in the following way:
X5 = GXy[x"] Y = GYa[y"] and @17
X, =X)=1GX,[1] Y, = 1Y) = GYo[1]. )

The extra factor of one half in the definition of the symbols X, and Y, differs from the similar
definition, for X; and Y}, in equations (2.7a). We will say more about this as we find more
characteristics.

At this point we would like to determine the commutator of two different versions of
this newer characteristic. As the commutator of two characteristics is always again a (linear
combination of)) characteristics, the fact that this commutator turns out to be non-zero provides
adesirable object, namely a ‘recursion operator’, that will generate higher-order characteristics
from the lower ones, just as was the case with the Olver recursion operator, or the Krasil’shchik
version of it, for the KdV equation. The calculation of this commutator will require the use of

. —2 . . ..
the second potential, ©, such that D ® = 2, and the further prolongations involving it, and
will give us two new characteristics:

{GX2[A]l, GX2[R]} = GX3[2RA' —2AR] & {X5, X5} =2(a—b)X§"!
{GY,[B], GY,[S]} = GY3[2SB’ — 2BS'] & (v v} =2(a—byy! (2.18)
{GX,[A], GY,[B]} =0 & (x4vil=0

where the quantities G X3[A(x)] and GY3[B(y)] are our new symmetry characteristics, one
for the ‘x-direction’, and one for the ‘y-direction’. These have the following forms:

GX3[A] = 3A(X) X3+ 2A'(X)[sX2 + 20, + 307 + 10,Q;]
+ A" (x)(357Q + 25D, + O, ) + 14" (x)s”

X3 = Oy +20, Dy + Qi (O + D7)

GY3[B] =3B(y)Ys +2B'(y)[sY2 +20,, + 3®] + 10,0, ]
+B"(y)(357Qy + 25D, + ©,) + 1B” (y)s?

V3= 0, +20,0,, +Q,(0,, + cb?)

(2.19)

where we have now defined the Abelian elements of this set by X3 = %Xg and the same
for Y3.

At this point we note that the recursive nature of our commutators, with these higher-
order characteristics, comes about because we are allowed to use arbitrary functions, instead
of simply constants. The restriction of these characteristics when the arbitrary functions are
chosen to be just constants, and therefore normalized to have value 1, are the quantities we have
been describing as {X|, X», X3} and {Y, Y>, Y3}. They are ‘Abelian characteristics’ in the
sense that they commute one with another, i.e., their span constitutes an Abelian (sub-)algebra
of the entire algebra of characteristics. In fact, they are exactly that subalgebra that creates the
compatible flows discovered by Takasaki and Takebe [9]. In general the presentation of these
Abelian restrictions will be simplified by the use of a factor of 1/#n, as will be described more
generically below.

We also already have enough structure to compute commutators for this new characteristic
with the Lie symmetries:

{GX;[A], GX[R]} = GX3[RA' —3AR’]
{GY5[B], GY\[S]} = GY3[SB’ — 3BS']

{X4, X7} = (a = 3b0) X5

(2.20)
{Y$, Y} = (a —3b)yy™!

<
4
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and also
{GX3[A], GS(a, B)} =2aGX3[A]+ BGX,[A']
{GY3[B], GS(a, B)} = 2aGY3[B]+ BGY;,[B'].

However, the next plausible commutator cannot yet be computed because we do not have
a structure that allows us to determine the s-integrals of G X3[A], nor even the second
s-integral of GX,[A]. Since we have generated one pair of new characteristics—depending
on one pair of arbitrary functions of one variable—for each new potential introduced into the
bundle, it seems plausible to now introduce yet more new potentials. On the other hand, while
the earlier potentials were obvious as simple integrals, the next ones are certainly no longer
obvious. There are of course similar questions that occur in the study of the KP equation, for
example, where the standard (Japanese school [17]) approach involves an infinite hierarchy of
dependent variables, all satisfying more- and more-involved equations as one climbs upward
in the hierarchy. Therefore, we used as a guide the hierarchical approach to this equation taken
by Takasaki and Takebe [9], as already mentioned. We introduce (re-normalized versions of)
their (infinite sequences of) quantities vy and ;. This set of potentials is defined via (two)
first-order pde’s that define the solutions as first s-integrals of differential polynomials in the
preceding potentials, and has many convenient aspects for the problem. In the next section a
general approach will be given for an infinite hierarchy of such potentials.

3. Prolongations for an infinite hierarchy of potentials

The previous two integrals, of our original dependent variable, Q = Q(x, y, s), were very
natural in the current context. The next ones are somewhat more complicated since they involve
integrands nonlinear in the previous variables. Those first two potentials, in the previous
section, allowed us to determine two new characteristics each, but required prolongation to
new fibres which required the jet coordinates for all their x- and y-derivatives, although not
of course their s-derivatives. The newer potentials we will introduce now will come in pairs,
as is required to maintain the symmetry between the x- and y-directions, since each one will
only allow a single new characteristic. However, because of this they will only require new
fibre coordinates in all derivatives with respect to a single one of the variables x or y, with the
derivatives with respect to the other variables being given by the pair of defining (first-order)
pde’s. Therefore the total number of new fibre dimensions introduced will be the same as
before, for each new characteristic.

With an aim towards a better explication of a fairly complicated process, we will initially
introduce just the first pair of newer potentials, and go through the process they engender to
generate their associated (pair of) new characteristics. Then we will retreat and set down a
general formulation that allows us to define the entire new infinite set of pairs. Therefore, we
now introduce a new pair of potentials, g, and w,. Each of them is defined as the solution of
a pair of first-order pde’s, which are compatible because of the original pde:

Digp = O, + 1% = with X =D
4> defined by is@ xx T3P mn 2 sT2
Dyg, =—®, e = —,ozeQ

D = 3.
Dywy = Oy + 5P} = with Y, = D,
w»y defined by :‘ 2 ¥y 2y {2 f) §2

Q _ Q
Dyw, =—®,¢e" = —ore™.

This pair of potentials allows us to re-consider the second characteristic as a second s-derivative,
namely X, = D,’g,. In fact it also provides enough structure to write the third characteristic
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family as a first s-integral. The general forms for the second- and third-level characteristics are
given in equations (2.13) and equations (2.19), respectively. With these additional potentials,
we may now re-write them as s-derivatives of more primitive structures, which we do below,
allowing, in each, for an arbitrary function A = A(x):

~

GX>[Al = D,*{Aqx + 1 A'sO, + 5A"s’}
GX3[A] = D, A(gor + O @y + 10%) + 24 [5(O, + 102) 445 + 10,0, ] (3.2)
+ 1A s(s D, +20;) + £ A"s )

We do not bother to write the associated formulations for GY,[B] and GY3[B], as they are
completely identical modulo changing x to y, and also g, to w;. On the other hand, it is
of course important that the total derivatives have been prolonged to accommodate the new
fibres which may have coordinates chosen as {g2, q2x, 2xx, - . .} and also {wo, woy, woyy, ...}
As well the associated linearization operator, 3, must be prolonged to this next level as well.
However, we assume that those prolongations have been performed at this point, but defer
the explicit explanation of how it is done until we describe the complete structure, beginning
with the paragraph that contains equations (3.4). On the other hand, we do now, again, in
this jet bundle with a prolongation to four sets of additional fibres, have sufficient structure
to calculate yet one more characteristic. That this calculation gives a non-zero result, again
shows the value of G X,[R(x)] as a generating function for new symmetry characteristics:

{GX5[A]l, GX2[R]} = GX4[2RA' —3AR] & X4, X5} = (2a —3b) x5!
GX4[A]l = 4A(X) X4 +3A (X)[sX3 + 213 + 3(O, Xp +2P,10 + Q,q0) | + LA”'s?
+ A'[SPWy + 451y + 202 +5(0,Q, + PT) +20, 9, ]
+A"s(L5°Q + 5D, + Oy)
X) = @our + 20,0, + 20,0y, + 302D, + Q(qor + 20,0, + DY)

(3.3)

X4

1
4
——1
M=o+ 0@+ 10 =D (X3) M= O, + 102

To calculate additional commutators, and characteristics, we must define yet another pair
of potentials, g3 and ws, and perform appropriate prolongations. It is therefore, instead,
time to go ahead and describe the details of the entire sequence of (pairs of) potentials
that we want to introduce, which will allow us to introduce the entire sequence of (pairs of)
characteristics for our equation. Therefore, we define a doubly-infinite sequence of (nonlinear)
potentials, {g;, w; | j = 0,1,2,...}, which will allow the description of a doubly-infinite
sequence of Abelian characteristics, {X;,Y; | j = 0,1,2,...}, for symmetries. Following
the mode of description used for g, and w; in equations (3.1), we define, for instance, ¢,
by giving the system of (compatible) pde’s that define its s- and y-derivatives in terms of
lower-order quantities. We do this via a pair of intermediary functions, {n; | j = 0,1, ...}
and {p; | j = 0,1, ...}, which are ‘mid-way’ between an Abelian symmetry characteristic
and its associated potential:

Diq; =n;

Dyq; =~ pje”
As already noted after equations (2.11), the inclusion of new potentials into our jet bundle
requires not only the prolongation of the original bundle to include these quantities themselves
but also their further prolongation to the infinite jet. More precisely, this is a prolongation
of the space, N, of dependent variables, or, equivalently J" (M, N)/J© (M). When this
larger space is extended, now, to its infinite jet the new coordinates on the additional fibres

— X, =Dyn; =Dq;. (3.4)
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could be taken, for instance, as {gj,qj0) | j = 0,1,2,...;|(c)| = 1,2,3,...}, with all
possible combinations of x, y, and s included in the list denoted by (o), with |(o')| indicating
its length. On the other hand, remembering the role of the g; as potentials, here we only
want the restricted variety in that prolongation, i.e., the prolongation of our earlier variety,
Y. Referring to that prolonged variety by /Y\Oo, it is a surface defined by all the pde’s in the
new version of the system. Therefore, as the sets {g;} and {g;,}, for all non-zero values of
Jj, are defined by equations (3.4), we see that the fibres in this prolonged variety need only
have {q;, qjx, qjxx, Gjxxx, - - -} as additional coordinates, with all other new coordinates being
reduced to the status of co-coordinates by those pde’s in equations (3.4). Of course, when
we do also consider the case for the alternate (infinite) set of potentials, wy, those must also
be included. We will describe them soon, but will first explain in detail these (differential)
polynomials, 7; and p.

R These new functions, n; and p;, are (weighted) polynomials over the set of quantities
{Dygm = gy | m =0, ..., j— 1}, only, involving no higher (or lower) coordinates on the
infinitely prolonged variety ?(oo). In terms of these coordinates, the 7; may be written out
explicitly, in terms of a sum over all the (additive) partitions of their (integer) index:

N = Z('al_},l) ]_[(qu, DY = Z( = )]_[(qu, DY

aeP (k) =1 acp(y NH192 -
no = 2 M = qox m = qi + 3(qo)’ 35
N3 = @ox + q1qox + §(Gox)’ M4 = @3 + Gacqor + 3(q120)° + q1x(qox)” + 5 (go.)*

N5 = Gux + @3xqox + @2xqix + 2 (qox)” + (G1x)°qox + q1x(q0x)” + 3(q0x)°

The differential polynomials p; are closely related to the 1;_;, being a sum of the same terms,
but with different coefﬁcientS'

e ¥l nwxq, ) — {zqm } w ko
acP(k—1) Gmx
o1 =1 P2 = qox 03 = qix + (qox)*
3 2 2 4 (3.6)

P4 = qrx + 2q1xq0x + (q0x) P5 = q3x + 2q2xq0x + (qlx) + 34]1x(6]0x) + (qOX)
P6 = Qax + 203:q0x +2G2:q1x + 392:(qox)” + 3(q1x)°qox +4q1x(q0:)” + (qor)’

The other sequence of new potentials, {w; | j = 0,1,2,...}, is related to similar
functions ¢; and o, polynomials in the {w,,, = Bywm |m=20,1,...,j— 1}, coordinates

on the prolonged J ", in exactly the same way as before for the n; and p;, except that one
must change all x to y, and also all g; to w;:

B‘Y w; :é-j = =
~ . = Y; =Dy = Dj’w,. (3.7
Dyw;=—oje

Because these pde’s define the sets {w; ., w;, | j = 0,1,2,...} as co-coordinates,

we must only include as (new) coordinates for our prolonged variety, ?(oo), the set
{wj, wjy, Wjyy, Wjyyy, ...} for each value of j.

The indices for the ¢; and wy, and, especially the potentials ¢ and w,, were chosen quite
deliberately since the definitions ‘backtrack’ so that this sequence includes the simpler (linear)



5836 J D Finley III and J K Mclver

potentials, ® and ® already introduced. We use @ as an initial point for both sequences, but
then diverge from there, using instead ®, as ¢; and ®, as w;:

~

Dyqo=Q=Dswg = qo=®=uwy, D;q1 =D.q, Dyq =—e" 38)
D,w, = Bywo, Dow =—-% — G =0, w =0,

~ ~ ~

and of course use the definitions given just above, equations (3.1), for ¢, and w,.

Thatall these pde’s are compatible is just a consequence of the pde itself. Alternatively, one
may say that they simply are a re-definition of the doubly-infinite hierarchy of commuting flows
for this pde, given already by Takasaki and Takebe [9]. In particular, since all the equations
in that hierarchy constitute distinct, commuting flows over the manifold, the various flow
parameters along those curves may be taken as new, independent variables. These variables
are just the doubly-infinite set of potentials which we have taken, instead, as additional
variables to constitute prolongations of our original jet bundle. An additional fascinating and
unexpected consequence of these definitions, and their compatibility with the original pde, is
the fact that they satisfy a ‘linearization’ of the original pde:

o~ o~

D, D,q; +e*Ds*q = 0. (3.9)

Of course the pde is not truly linear since the g; and €2 are tightly related via other pde’s.

Appendix B has some details of what little part of the theory of additive partitions of
integers that we need, this theory having been elaborated and studied in many ways. Here
we simply note that the set of all additive partitions of an integer k we denote by the symbol
‘P (k). If a is an element of this set, i.e., a € P(k), then a is an ordered list of integers, a; < k,
where qg; tells us how many times the integer i is repeated in that particular partition; obviously
1 <7 < k, and in any particular partition, many of the a; will be 0:

k
ac€Plk) << a=f{a,aas...q4} a,=>0 such that &k = Zpap. (3.10a)
p=1

Two very useful functions on these lists, |a| and {a}!, will be used often:

k k
la| = Za,, and also {a)! = l—[(a,,)!. (3.10b)
p=1 p=1

Obviously |a| satisfies the constraint that it must not be larger than k.

Having the explicit sequence of these polynomials, from which our potentials, g;
(and also wy) are first integrals, it is straightforward to calculate the sequence of Abelian
characteristics, X ;. They can be determined either from the polynomials n; or from the p;:

Xj = ij = Bszch' = eigﬁx(ei'gpj) = 5)cpj + prj
=dqj-2xx + 2QOXQj—3,xx L Qx(Qj—Z,x e qé;l)
X1 =Q X, = +Q
1 x 2 qoxx xq0x ) (311)
X3 = quxx +2qoxqoxx + 2y (qlx + Q()X)
X4 = Qoxx + ququxx + zq()qulx + 3Qqu0xx + Qx (q2x + 2q0xq1x + QSX)

(In the second line above we use commas to separate x from a complicated index value such
as j — 3, just to make the meaning clear.) Of course the Y} are made in the same way. As
already noted these X;, and separately the Y;, form Abelian algebras of characteristics for
generalized symmetries.
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To determine the more general versions of these characteristics, which involve arbitrary
functions (of one variable), we must first establish the complete prolongation of the total
derivatives, and also of the linearization operator. The new, infinitely-prolonged total
derivatives then have the form

[o.¢] o0

Dx =D, + ®,dp + ZZ Gk, (m+1) g ) @:’C(m)awk.(m}

o0 0

5y =5y + @00 + Z Qk,)'(ln)aqk.(m) + wkq(m’rl)aw.(m} (3.12)
k=1 m=0

[0¢] o0
D =Dy + Z Z M, (m) Vg iy + Z Sk, (m) O )
k=0 Um=0 n=0

where, for instance, the notation g,y means the coordinate on the prolonged bundle that is

equal to (5x)mqk. As before the (prolonged) co-coordinates, denoted with over-tildes, always
correspond to derivatives of some g, or w; that involve both x and y-values of the independent
variables. For instance, those with one y and m x’s on a ¢y, i.e., cm(m), are determined by

the action of (D)™ on qx.y» Which is given by the differential polynomial py, above; likewise

those with one x and m y’s on a wj, i.e., Wk (m)» are determined by the action of (5),)’” on
W, determined by the polynomial o;. (The use of this newer notation changes slightly the
earlier form of the prolongation: since ¢y = & = wy, all the coordinates related to @, which
appear in equations (2.4) are all still contained in this newer version, and not counted twice;
and, since g; = O, and w; = ©,, all terms that were in equations (2.12) related to ©® are
here also, with one exception. That exception is the quantity @ itself, as opposed to any of its
derivatives. It appears that ® itself is never explicitly necessary in the prolongation structure;
only its derivatives are ever used. On the other hand, do note the comments in the conclusions
concerning the possible relationship between e® and a 7-function for this problem.)

For an « defined over the complete, prolonged variety Yoo, the appropriate prolongation of
the 3, operator must now contain terms involving 0g;> Ogjs + s Owys O,y s - - ., Where j varies
from O to infinity, with a-dependent coefficients. We label those coefficients for d,; and d,,, as
Q;(a) and W;(a), respectlvely, while the coefficients for some hlgher—level ﬁbre coordmate

=~ A72

say 0., would just be (D ) Qj(a), etc. Since gg = @ = D Q and ¢; = = D, D, Q
are hnea.r we already understand how to construct prolongatlons correspondmg to them: the
—1

=~ -~ -2

appropriate coefficients for aqo and g, would be Qp(a) = D a and Q(@) = D,D. «,

N
respectively. However, ¢, = 5 772 =D, (@xx +102) = D, (611x 143,) depends on
in a nonlinear way—as do all hlgher qj—so that the prolongation appropriate for them is not
as immediately obvious. The coefficient for, say, d,,, namely Q»(«), should in fact be the
linear part of ¢ (2 + €a), or, equivalently, the first functional derivative, with respect to «, of
the expression ¢, (£2):

=—-1 |22 1 ~ ~-1 )
¢(Q) =D, {D,D; (Q)+3{D.D, 2}
~-1f =222 ~ ~_1
0 (Q+ea) — ¢2(Q) = D, {erDS a + 3{2go.e D D, (x}+0(62)} =eQs(a) + O(e?)

(3.13)

-1 ~

D. D a+qoﬁ_lﬁa}=ﬁ (D, 01(@) +qox Dy Qo(e)}.  (3.14)
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The entire set of new terms in 3,, for the additional potential, ¢,, should be that with
coefficient Q> plus all those generated by its x-derivatives, i.e., the following (infinite)
sequence: Q»()dy, + [Dx Q2(@)1dy,, + [Dy* Q2()]d,,., +

We must then continue in this manner, to include the corresponding sequences for g3, g4,
etc. Next we must also consider the various coefficients W; () that must multiply 9y, , for the
other (infinite) sequence of potentials, w;:

0 =~-1 ! =
w2+ ) W;(a) = D, [Z;,-kDka(a)}
=0

=0 (3.15)

Wo(@) = D. (@) Wi(@) = D,D. ().

This finally gives us sufficient structure to provide the necessary generalization of our
linearization operator, which generalizes completely the earlier, provisional form given in
equation (2.15):

3 =3a+2{z D( Ok(@)] ,M+Z Wk(a) wkm}. (3.16)
n=0

k=0 Um=0

As the process of determining Q,(«), as described in equations (3.13), (3.14), seems
fairly complicated and would appear to become worse for O3, etc, we now show the existence
of a recursive algorithm that allows us to calculate the Q;(«) sequentially, always giving us
the next one in terms of those with lower indices. However, to explain this, we must retreat
slightly, and study in more detail the relationship between the 7; and p. Taking the definitions
given earlier, it is straightforward to show the following relation between them, and then a
recursion algorithm for these polynomials:

87“
=pj_ mx P j—m- 3.17a
b Pj—k Pj+1 = Zq pj- ( )
Since the n; depend only on these particular jet coordinates, {gi, | k =0, ..., j — 1}, we may
also determine the following additional useful recursion relation:
. j-1 3 j-1
Deni =1 Grer—— (1 = Y Qexx - (3.17h)
k=0 kx k=0

To invert these relations it is useful to re-write them, using the form of a (lower-triangular)
matrix, P;*, with j = 1,2, ... whilek =0,1,2,...:

ij =

(3.18)

anj . Pj—k .] >k
0qkx 0 j <k

Taking now the quantities {Bx nj | j=1,2,3,...} as the components of a column vector,
and {gr.x | k =0, 1,2, ...} as the components of another, we see that equations (3.17b) may
be taken in the form

Dy, = ZP, Gixx (3.19)
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while equations (3.17a) are essentially a statement defining the matrix Q, the inverse of the
matrix P:

—qk—j,x k 2]
for k=0,1,2,3,... j=1,2,3,... 0/ =11 k=j—1
0 k<j—1.
‘ (3.20)
Pj—t+l = {qoxpj—t — - —qje—1xm} =0 £ <
Piaf0 " =11 t=j
0 {>j.

With this information about the inverse, we may now solve equations (3.17b) for the column
vector with components gy :
k+1 R R k—1 .
Gkxx = Z ijﬁx nj = 5}( Ni+1 — Z q'nxﬁx Ni—m - (3.21)
j=1 m=0
Since the process of determining the linear part of g;(£2 + ex) is just a derivation, we
simply follow the same procedure as was used to determine equations (3.17b), replacing the

derivation D, acting on 7 ; treated as a function of {x, y, s}, with the determination of this

linear part, treating the n; instead as D,q;(£2). That process gives us the desired recursive
algorithm to obtain D Qy («) in terms of the set {D, Qilj=0,....k—1}

k—1 k—1
= = d =
D, Qi(@) =) [D:Qu@)]—— 1 =Y pi-m Dy Q@) (3.22)
m=0 8qu m=0

The general equation for the Oy («) involves an s-integration, which obviously cannot be
performed exactly for any arbitrary function «. As usual, however, we only need to perform
that integration when the argument is a characteristic for a (generalized) symmetry. Therefore,
choosing that o as a characteristic, X ;, we can accomplish explicitly the s-integration. The
forms given above will always involve some second derivatives of g,,, i.e., terms of the form

gmxx- We may use equations (3.21) to replace these in terms of a series of quantities involving
D, Ny = qunx, which allows the desired integration. This must be done sequentially;

therefore, we now write the first two, which are very simple, then proceed onward to Q> (X ;)
explicitly, and then consider the more general case. Those first two are just the following:

—-1 — =2
Qo(X;) =D, (X;)=n; 01(X;) =D,D; (X;) = qjx. (3.23)
On the other hand, returning to equation (3.14) for the interesting case @ = X ;, we have
_71 J—
02(X;) = Dy {qjxx + qoxDxnj}. (3.24)

When j = 1 the integrand above is simply the form for me, so that Q,(X;) = ¢q,. For
larger values of j we may proceed as already described, by eliminating the displayed g, via
equations (3.21), which gives us

0>(X1) = qix

j—1
— 1 | = —
QZ(X_/') = DS {Dxr]jﬂ - § quDxr]j—m}
m=1

j—1 Jj—1
_ — 1 .
=d4j+1.x — Ds {Z‘meDxT)j—m} =dqj+1.x — E Zmeqj—m,x Jj =z 2.

m=1 m=1
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We can continue onward, then, to Q3(X;):
~1

03(X;) =D, {p1Dy02(X;)+p2D,01(X;)+ psDy Qo(X;)} = -

J Jj—1

-1 | = =

s {Dxﬁj+2 - qux Dnjyi—x — quxq_i—k,xx
k=0 k=1

Il
S

~ J-1 ~ ~
+ qox |:Dx77j+l - Z meDxnj—mi| + [q1x + (QOX)Z]Dxnj,

m=0

j—1 =2 j—k—1
1 .
= =G ) Gkt 3 {Z > ququq,-_k_m,x} j =3 (326)

k=1 k=1 m=1
For smaller values of j, one can simply terminate the derivation earlier. On the other hand, it
turns out that they are more easily described by simply noting that

Ou(X)) = Q;(Xyp). (3.27)

As these forms are becoming lengthy, we now simply note another couple of examples, and
then describe the structure in a general way:

04(X5) = gsx — Goxqix — 2q5:92x — 394xq3x + (20)° + 443222 G1x + Qax (q10)* — @22 (q12)°
05(Xs) = qox — G7xq1x — 2q6x92x — 3q5:@3x + @5x (q12)* — 2(qax)” + 494xG2xq1x
+3(q3:)°q1x + 403 (020)7 — @3x(q10)° — 3(q22q1:)* + 2 (q10)°. (3.28)

To consider the general case, we first note that we may always use equation (3.27) to
convert those objects with j < k into those where j > k. We ascribe a ‘grade’ of m + 1 to the
quantity g,,, and note that Q(X ;) has grade k + j. For j > k, it is composed of a sum of all
products of k or fewer ¢,,,, such that the grade of the entire product equals k + j. The single
term with only one element in the product will, of course, always be gy, ;_; , and is positive.
From there on the signs alternate so that the sign of a term with n elements in the product will
have sign (—1)"~!. The explicit coefficients vary depending on the number of repetitions of
a single quantity in an individual product. However, any individual one may be calculated
explicitly by the method described above.

There are also some other quantities for which we know that Qy («) should be explicitly
defined. These are of course the other objects which we need to use to calculate commutators
with these generators, i.e., the characteristics Y; and the characteristics for the Lie symmetries
in the s-direction, G S (e, ). This last set is very straightforward, and the calculation gives us

QLG S(a, Pl = (as + B)m — (k + Dagy. (3.29)

The other set is obviously a larger question, because there are many more of them. We begin
with the straightforward ones as before:

~-1

Qu(Y)) =D, (¥)) =¢; = Dyw;

01(Yy) = wyy = —oy e? 0 (Y1) = gy = —pr e”
where the polynomials p; are given in equations (3.6), while we recall that the o} are just
the polynomials p; with all x interchanged with y and all ¢,, interchanged with w,,. The
alternation between a function of the wy and a function of the gy, for the two options in the
previous equations, suggests that we will need polynomials in both of these sets of potentials
for the more general case, namely Q;(Y;). We therefore first define generalizations of

(3.30)
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the polynomials, py, o, etc that we have already been using. We take 77,{ and Q,i as graded
polynomials over all integer partitions of k — 1, in the variables {g.} or the {w,}, respectively,
but otherwise the same:

Pl=1=0
- (al+j-D!
Pl=> H( n—1)"
. (J = DHa}! 331
fork > 2 eP(k—1) (3.31)
j (al+j-D!
Q]j( = Z 1_[( Wy — l)an
ey U — DHal! '

Comparison with equations (3.6) shows that Pk = px, and Qk = oy, 1.e., these earlier ones
were just the lowest-order members of these new sequences. It is then straightforward to work
out the simple descriptions for this last set of coefficients we need:

min(¢,k) (—l)m
QY= ) Pt Qe " (3.32)
m=1
with some other particular examples being given as
V) = 1p20?2 22 _ plgle®
fork >2 {ﬁziyk; TPLQ"Q}' a0 Pij‘ .
K2) = 57— (S e
27 k-1%1 k=1 (3.33)

03(Y) = —1PPQ} , e+ 1PI07 | ™ — PO e”
0r(Ys) = —3Pp_, Q1 % + 3P Q5™ — P Qje®

To continue this, we must also follow an entirely analogous procedure to calculate the

fork >3 {

coefficients W;(a), 5}, W;(a), respectively. However, they may be obtained easily from the
ones already given, by the process of interchanging all x with y, all g; with wy, n; with
Lk, 73,{ with QJ, etc. The process of these interchanges takes Qi (X;) into Wi(Y;), Qx(Y;)
into Wy (X;), and Qx[GS(c, B)] into Wi [GS(«a, B)]. This process is quite straightforward, if
perhaps tedious, and we do not write them out.

4. The two infinite sets of symmetry characteristics

The prolongations described above now allow the calculation of any commutators of
characteristics desired. In particular, we recall that the discussions after equations (2.17)
noted that commutators with the characteristic GX,[R], i.e. commutators of the form
{GX[A], GX>[R]} had the property of a recursion operator for those characteristics we had
already found at that point, as described in detail at equations (2.18), for j = 2, giving G X3,
and equations (3.3), for j = 3, giving GX4. We now are able to calculate such commutators
for arbitrary values of j, which allows us easily to see that this gives an infinite sequence
of characteristics, each with its own arbitrary function, and s-dependent polynomials. The
structure as a recursion operator is as expected:

{GX,[Al, GX2[R]} = GX;1i[2RA" — jAR'] & {X% X1} = (a— j)X¢ 4.1

It is simplest to display these as second (total) s-derivatives of the appropriate polynomial
forms. When this is done the result, for GX;[A], is a polynomial beginning with a term
containing A, then a term containing A’, a term containing A”, etc, up to a term containing
A® | the kth derivative of the function A. For m < k, the coefficient of the term containing
AU is a polynomial in s, of order m, and the coefficients in this polynomial are made only of

j+l
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products of the g; themselves. The last term, which contains AW is simply s A® /(k +1)!.
We display the general result below, along with some explicit examples to give a better ‘feel’
for their form, noting that forms for G X[A] and G X,[A] have already been given:

k+1 k—m

k—1 lal .
= S m [[h=iin m+1—|a| aj
GXi[ Al = D,? ® 4y A0 st T Lg%t (4.2)
DI [Ta

A
k+ 1)! = A, @)l —al+ 1)!

~ 1
GX;3[A]l = D,*> {3Aqs + A’ <2sq2 + —qf>

2 + fA//ql + iA///}

2 24

3 5
_'_S_A///q1 +S_A(iv)

= / 1 1
GX4[A] = DS2 4Aqs + A (3sqs +2q1q2) + A”s (sqz + —qlz) G 120

2 } (4.3)

=~ 1 ,
GXs[A]l = Dy {5Aqs + A'[4sqs + 3q1q3 + 2(q2)*1 + SA '(3s%q3 +4sq1q2 + (q1)°/3)

1 .
+ gA/”sz(sq;2 +3(q1)?/4) + AWs*q, /24 + AW$5 /720 } .

As usual, there is the completely analogous infinite sequence of (non-Abelian) characteristics,
each with its own arbitrary function of one variable, B(y), which we label as {GY;[B] | k =
1, ...}, with the same structure. We may therefore display explicitly the commutators of each
set, with themselves and with each other:

{GX;[A], GXk[R]} = GXju—1[kRA" — jAR']
{GX,[A], GYy[B]} =0 4.4)
{GY,[B], GYi[S1} = GYju—1[kSB' — jBS'].

We may also pull out the two basis sets, and display their commutators, which of course have
the same content as the ones just above:

Xt =G6x,"  vP=Gr.uh)
(X4, X0 = (ak —bpX§y=l (X570 =0 (¥, 70} = @@k —bpYii

J+k—1 Jtk—1"

4.5)

On the other hand, the two original Lie symmetry characteristics, Sy and S;, do not commute
with them, but do treat the two sets equally, where we use GS(a, 8) = a Sy + BS:

(X0, 8o} = (a—1)X] (Y2, S} =@- 1y}
(x2.5) = bx!! (r2.5) = by
We may also recall that the Abelian subalgebras of this large algebra, which are responsible

for the commuting hierarchy of pde’s built over the original SD<f f(2) Toda equation are
defined by

(4.6)

1
X0 YbEEYf? (X, X,} =0={X,, ¥} = {¥,, V). (4.7

5. Conclusions

Our search for these generalized symmetries of this equation began with a somewhat different
quest. We were looking for a generalization of the Estabrook—Wahlquist method of finding
non-local potentials, and associated Bécklund transformations, which would be generic for
pde’s with three or more independent variables. The SDiff(2) Toda equation seemed like an
ideal candidate as a beginning for this project, since the more usual Toda lattice equations had
well-defined non-local (EW) prolongation structures and Bécklund transformations. Limits of
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those (systems of ) two-dimensional equations lead to our current pde in a straightforward way;
however, the associated limits of the prolongation structures [3, 18] led to nothing interesting.
We still have no new directions for that search.

Nonetheless, in some attempt to ‘buy’ new solutions from old ones, for this pde, we
decided to consider the generalized symmetries, beyond the usual Lie symmetries. This also
led to a null result. That problem was resolved by finding that each generalized symmetry
required the addition of an additional pair of first-order equations to the original system,
defining the inclusion of a new potential to the jet bundle. This has then generated the entire
structure of generalized symmetries described here. We have taken the original, commuting
hierarchy of symmetries, found by Takasaki and Takebe, and broadened it extremely into our
Lie algebra of generalized symmetries, which is definitely no longer Abelian. This allowed it
to be described via a recursion operation, which generates the entire doubly-infinite algebra.

An important and interesting question is just how one may use this new structure to create
new (families of) solutions to the original pde. We trust that this larger explication of the
generalized symmetries of the equation will eventually be helpful in a better understanding
of the solution manifold for the problem. There are several possible routes to an answer
to this question. A very interesting one involves the work of Hernandez et al [19], which
provides correspondences between continuous symmetries and Biacklund transformations for
the Toda lattice equations. Whether such an idea can be moved over to this limiting equation
we do not yet know, but the idea is a promising one. Another direction has to do with the
t-function for the hierarchy of Takasaki and Takebe. In other work, on the KP equation,
the appropriate t-function, considered as depending on all the (infinitely-many) independent
variables of the hierarchy problem, has been used as a source to generate (almost) all solutions
of the original nonlinear equation. Takasaki and Takebe characterize the t-function for this
particular problem, and it appears to us that the function we have called ¢® satisfies all those
criteria. Therefore further study of it may well show that it also has the virtue of being able
to tell us how to find the desired general solutions. However, research on that question is just
beginning.

Appendix A

We begin with the standard Plebanski [20] formulation for an h-space, i.e., a four-
dimensional, complex manifold with a self-dual curvature tensor that satisfies the Einstein
vacuum field equations. Such a space is determined by a single function of four variables,
Q = Q(p, b, q, G), which must satisfy one constraining pde, and then determines the metric
via its second derivatives, as follows:

QppLgq — 2,pggp =1 (A)
g=2(R,pdpdp+Q ,;dpdg +Q ,5dgdp + 2 45 dg dg).

Restricting attention to those complex spaces that allow real metrics of Euclidean signature,
there are only two possible ‘sorts’ of Killing vectors, ‘translations’ and ‘rotations’. Noting that
the covariant derivative of any Killing tensor must be skew-symmetric, by virtue of Killing’s
equations, we may make this division more technical by dividing the class of Killing vectors
based on this skew-symmetric tensor’s anti-self-dual part, which Einstein’s equations require
to be constant. The ‘translational” Killing vectors are those for which this anti-self-dual part
vanishes, while it does not vanish for the ‘rotational’ ones. The self-dual case—where the
anti-self-dual part vanishes—has been completely resolved [21]. (In this case the constraining
equation for 2 reduces simply to the three-dimensional Laplace equation.)
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We continue by insisting that the space under study admits a rotational Killing vector, E,
and then re-defining the variables so that they are adapted to it:

E=i(pd,—pop) =09y  E@=0  p=vre?  p=ire? (A2)
which changes the constraining equation as follows, construing €2 to now depend on the
variables {r, g, g}, but not ¢:

r2,) Q245 — 124 Qz =1 (A3)

It is however often more convenient to rewrite the constraining equation, and the metric,
in terms of a new set of coordinates, obtained from the original ones via a Legendre
transform based on variables » and s = r2,. Taking {s, g, g}, along with ¢, as the new
coordinates, and v = Inr as the function of these coordinates that will generate the metric,
we find the following new presentation, which shows the agreement with the SDiff(2) Toda
equation, where we must simply identify this new function v with the function €2 as given in
equation (1.1):

g=Vy+V 1(dp+w)? V=1l y =ds? +4e’dg A dg
o= 1{v,dg —v;dg} Vet () =0 and t(dcg) = —ivV?d@2s — V.
(Ad)

Another distinct use for this equation is the desire to have a manifold which is scalar flat
and Kihler. LeBrun [22] showed that the solutions of a pair of pde’s were necessary to answer
this question. One of those is the SDiff(2)Toda equation, and the other one is the linearization
of that equation, for a second dependent function. This has been an important impetus for
some of the work on the problem of SU (2)-invariant metrics [2].

Appendix B

We give here simply a somewhat more detailed description of the set of additive partitions of
integers, which have been described and studied in many ways. For a given integer, &, any
particular (additive, integer) partition is simply a list of positive integers with sum equal to
the given integer, k. We label any one such partition by @, and may describe it in more detail
as the sequence [iy, is, ..., 4], with all the i; being non-zero, and where, by convention, we
order the entries so that i; > i;,1, and |a| is the number of (non-zero) entries in a. It may
well turn out that some of these quantities are the same, in which case we may use a,, to count
the number of times the integer m < k appears in that sequence. The set of all such integer
partitions for a given & is denoted by P(k), and we will denote its number of elements, i.e., the
number of distinct partitions of k, by p(k). An example for k = 5 is given by the following:

P(GS) =151, 14, 11, [3,2], [3, 1, 1], [2,2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]]. Bla)

For larger k at least, a ‘shorter’ alternative is to use ‘powers’ for those integers that are repeated
in a particular partition, with the previous example being shown below in this mode:

P(5) = [I5], [4, 11,13, 2], [3, 171, [22, 11, [2, 1°], [1°]]. (B1b)

In these examples, we have also introduced an ordering of the partitions relative to one another
so that those with larger entries appear first, i.e., to the left.

On the other hand, it is more useful at the moment to describe any particular partition of
k, i.e., some a € P(k), by giving an ordered list of non-negative integers, a;, where a; tells
how many times the integer i is repeated in that particular partition. We note that obviously
we must have 1 < i < k. This corresponds to the list of all the powers that appear in the
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second presentation of the partitions of 5, above, except that we carefully consider all integers
between 1 and £ to be present, so that some integers have power 0:

k
ae€Pk) <— a=la,a,as,...qa a, >0 such that &k = Zpap. (B2)
p=I
In this form our example above takes the form
P(S) =1{0,0,0,0, 1}, {1,0,0, 1,0}, {0, 1, 1, 0, 0}, {2, 0, 1, 0, O},
{1,2,0,0,0},{3,1,0,0,0}{5,0,0,0,0}].
It is this form of description of the partitions that is used in the definitions of the various sets
of polynomials given in the main text, such as the 7 in equations (3.5).

As already noted in equations (3.11), there are various useful functions that describe
individual members of the set of all partitions of k. Two of these that we need are |a| and {a}!:

(B3)

k k
la| = Za,, <k and also {a})! = ]_[(a,,)!. (B4)
p=1 p=1

Continuing with our example above, for the partitions of 5, these mappings have the following
values there:

for a e P(5) la] = [1,2,2,3,3,4,5] {a}! = 1[1,1,1,2,2,6,120].
(BS)
The simple explanation as to why these coefficients enter into our calculation is that the
coordinates on the jet bundle may be graded, i.e., assigned a weight so that the various pde’s

have a consistent weight. A reasonable way to describe that begins with the consideration of
a formal infinite series, £, in powers of some grading parameter, /:

) n [
L= {1 + Zuil_i_'} => Cam (B6)
i=0 m=0

The early values of the coefficients C;, are easily seen to satisfy the following simple relations:
n n n n 2 n n i 3
Cy=1 CY| =nug C2=nu1+<2)u0 C3 =nu2+2(2>u1u0+(3>u0.
(B7)

However, we would like a more general description of them. Because of the association of the
index on u; with the power of A one may ascribe a ‘weight’ to the u;: give the weight j + 1 to
the factor u ;, which causes the coefficient C), to be a sum of terms, with distinct coefficients,
each of which has the same overall weight, namely m. Therefore those u; that contribute to
a given coefficient C), have weights described by the different (positive, integer) partitions of
m; these form a set, which we label as P (m). This tells us to display the C}; as a sum over all
those terms, each with an appropriate coefficient, which is a pure (combinatorial) number:

Ccr = Z Cn;m | ayug'uf ... .up,

aeP(m)
m
= Y Commla]]wi )  a=la.a....an) (BS)
aeP(m) j=I

C(n;m|a)zn(n_1)'“[n_|a|+l] B n! _(n )((|a|)!>. (B9)

alay! ... ay! C[n—lall{a}!  \Jal {a}!
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The coefficients C(n; m | a) exist for each integer value of n, and for every partition of
m, i.e., for a € P(m). It works, in particular, for negative as well as positive values of n,
provided we simply make the usual, standard substitutions for the binomial coefficients. For
instance when we set n = — p, for negative values of n, we have

(’:)V!zn(n— Don—=r+ =D pp+ ). p+r = 1=(=1) (p+rr_ 1)”‘

Therefore, in the case that n = — p is negative, we may determine the desired coefficients as
follows:

Cl = ZE(p;m | a) (=D ug s . uln a=\{ay,,a,...,an}

aeP(m)
[ptlal -1 <p+la|—1> <(|a|)!> (B10)

(p—Dlaylay! .. .a,! la| {a}!

note that E(1;m | a) = (—=1)'C(—1; m | a) just simplifies to (V{f}!“).

E(p;m|a) =

It is exactly these coefficients E(p; m | a) that appear in the definitions of the polynomials
PY, in equations (3.31).

Good general references for the theory of partitions, and proofs of the properties of the
coefficients C(n; m | a), are found in the books by Comtet [23] and by Riordan [24].
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