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Abstract:

A system of coupled vector-field-valued PDE’s is presented, the solutions to

which would determine two coupled, infinite-dimensional vector-field realizations

of the group SL(2,C). While the general solution is (partially) presented, the

complicated nature of that solution is deplored, and the hope expressed that

someone can replace it by something much more natural.

The problem arises out of searches for Bäcklund transforms of a system of

PDE’s that describe twisting, Petrov type N solutions of Einstein’s vacuum field

equations.
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I. The Connection with Gravitational Waves

I have long considered it an honor to have been guided by Eyvind Wichmann
during my studies in Berkeley. I am therefore very pleased to be here at this sym-
posium to honor him and his work, and to present some questions about infinite-
dimensional group representations. Certainly my strong interests in this area were
nurtured by Professor Wichmann’s many excellent class handouts on group repre-
sentations and the importance of symmetries in physics.

While the subject of this paper revolves around questions concerning realiza-
tions of the (complex version of the) rotation group, it is appropriate to first give
some indications of the context in which these questions first arose, which is a part
of the classical theory of gravitation as described by Einstein’s vacuum field equa-
tions. Working in Mexico City, Jerzy Plebański1 and I have had a very long-term
interest in realistic Petrov Type N solutions of these equations. These are the sort
that would be appropriate for a description of the gravitational radiation emitted
by a compact source, such as an exploding star, or simply a binary star system.
Such a solution is characterized by a special direction in spacetime, a 4-vector field,
that describes the world line of the radiation in question. Such a vector must be
of zero length since the radiation moves at the same (local) speed as that of light.
In order to support the proposal that the radiation has been emitted by a compact
source, it is essential that the ”wavefronts” associated with this direction should
not be “plane,” which generates the mathematical requirement on the vector field
that it should have a non-zero value of the “twist.” This requirement arranges for
the wavefronts to retain some essential details of how they were created, thereby
allowing observations to have some of the character of a telescope. This interesting
physical problem has been seriously considered by many people. Nonetheless, only
one solution is known,2 and it is not asymptotically flat3.
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Our approach to this problem has its origin in the theory of complexified space-
times often referred to by the name hyperheavens, or HH spaces.4 Such a space is
distinguished by the fact that it contains (at least) one congruence of null strings, i.e.,
completely null, totally geodesic, complex-valued, two-dimensional surfaces, which
in the generic case has a non-zero expansion. This expansion picks out a special di-
rection on any given leaf of the congruence, thereby determining an affine parameter,
p ≡ φ−1, which can be used as one of the four coordinates needed for a local speci-
fication of the spacetime. Such a restriction on the space of solutions for Einstein’s
field equations causes those solutions to be determined by a single “Debye-type”
potential function W required to satisfy a single non-linear partial differential equa-
tion, the hyperheavenly equation, thereby reducing greatly the effort required to
solve the complete set of vacuum field equations which, otherwise, would constitute
ten coupled PDE’s in ten unknown functions.

In the case in question, the insistence that the solution be of Petrov Type N
is what picks out the unique direction field for the propagation of the radiation,
and also gives us completely the dependence of the potential function W on the
affine parameter, p, reducing the problem to one in only three independent vari-
ables. A further simplification of the problem—in hopes of finding a new, interesting
solution—may be obtained by asking that the wavefronts have a symmetry, i.e., to
ask that the spacetime admit a Killing vector. This reduces the number of indepen-
dent variables to only two, which allows the introduction of very powerful methods
to find solutions via Bäcklund transforms, zero-curvature conditions, etc. One com-
mon approach to the determination of such transforms has been the creation of an
Estabrook-Wahlquist prolongation structure.5 My former student, Denis Khetselius
worked on creating just such a structure for the twisting, Petrov type N, vacuum
equations with one Killing vector.

The reduction of the hyperheavenly equation to this case6,7 leaves one with two
unknown functions of 2 (complex) variables, F (v, s), and x = x(v, s), which must
satisfy a triplet of nonlinear, second-order partial differential equations. These equa-
tions may be presented in a way that is linear in each of the variables separately,
thereby either illuminating or obscuring some of the difficulty of the problem; how-
ever, in order to do this, one must use a nonholonomic basis for the derivatives. We
therefore agree to begin on some larger manifold, where we treat all three of x, v,
and s as coordinates and F a function of them all, but then project downward to
the physical variables in two different ways. We use ∂2 as the derivative with re-
spect to s, holding v constant, i.e., with {v, s} as the choice for the two independent
variables and x = x(v, s) as a function of them, but also make an alternate choice
where we choose {x, s} as the two independent variables and take v = v(x, s) as the
dependent function, indicating this choice of derivative with respect to s, holding
x constant, by the symbol ∂3. We may “explain” these derivative choices by the
following differential, and also show their (non-zero) commutator:

dF = Fvdv + F2ds = Fx′dx′ + F3ds = F2
x2

dx + F3
v3

dv , (1.1)
[∂2, ∂3] = x23

x2
(∂3 − ∂2) = −v32

v3
(∂3 − ∂2) , (1.2)

where the function x23 is the physical twist of the problem, which we need to be
non-zero. Using subscripts to denote partial derivatives in this (nonholonomic) basis
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the type N equations—to be solved—are

F33 − γF = 0 ,

(∂2
2 −∆)xvF = 0 ,

x23(F23 + F32) + x223F3 + x233F2 + 1
2x2233F = 0 ,

.

(1.3)

Of course the symbol xv above denotes the derivative of x with respect to v; however,
in this basis it may be replaced by its equivalent, the ratio −x2/v3. As well there
are two gauge functions, ∆ and γ, of only one variable, which may be allowed into
the problem. In the simplest case they could be chosen to be simply x and v,
respectively. However, there may be some use in the freedom they represent, which
may be described by the following equations:

∆2 6= 0 = ∆3 , γ2 = 0 6= γ3 . (1.4)

Lastly, one must admit that the system as presented is not yet involutive,1 but has
yet one integrability condition other than just the equations themselves (and of
course their derivatives):

F223 + 2x23
x2

(F23 − γF ) + γF2 −
{

x233
x2

+ 2(x23
x2

)2
}

(F2 − F3) = 0 . (1.5)

II. Zero-Curvature Prolongations for Nonlinear PDE’s

Our current desire is to obtain non-trivial solutions of this system of equations.
The preferred method would be to determine a Bäcklund transform via a zero-
curvature relation and Estabrook-Wahlquist prolongation structures. We therefore
give a very brief description of how this process is implemented.8,9 To begin with,
we think of a k-th order system of PDE’s as a variety, Y , of a finite jet bundle,
J (k)(M, N), with M the (space of) independent variables and N the dependent-
variables. From this geometric approach, we can look for point symmetries or con-
tact symmetries directly on Y ; by prolonging to the infinite jet space, we may
determine generalized symmetries. However, to determine the non-local symmetries
that generate Bäcklund transformations, we must prolong the system yet further, to
a fiber space over J∞. We label the fibers W , supposing that there will exist vertical
flows that map solution spaces of one PDE into another, this one being satisfied by
the dependence of the fiber coordinates, wA, on the independent variables. The
compatibility conditions for such flows to exist are referred to as “zero-curvature
conditions.”

Solutions of these conditions may be found using the tangent structure or the
co-tangent structure, over J∞ × W . For a vector-field presentation, we choose
a commuting basis, {ea}, for tangent vectors over M , and lift them to the total
derivative operators, Da, over J∞. When they are restricted to the variety Y∞,
which is the lift of the original PDE’s, we denote that restriction by Da. The
further prolongation into the fibers W requires the addition of some vector fields
vertical with respect to the fibers, which we may denote by Xa =

∑
XA

a (∂/∂wA),
with the XA

a functions of both the jet variables and the {wA}. It is the insistence
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that these prolonged total derivatives, Da + Xa, still commute, that ensures that
the wA can act as pseudopotentials for that PDE:10

0 = [Da + Xa , Db + Xb ]∣∣
Y∞×W

=
{
Da(XC

b )−Db(XC
a )

} ∂

∂wC
+ [Xa , Xb ] . (2.1)

As an identity in the jet coordinates, Eqs. (2.1) determine several independent equa-
tions. Their solution describes the Xa as linear combinations of vector fields Wα

with coefficients depending on coordinates for Y ⊂ J (k)(M,N). The wA-dependence
is encoded within a set of commutation relations among the {Wα}, considered as
vector fields within the entire algebra of vector fields over W . The smallest subal-
gebra generated by the Wα that faithfully reproduces the linear independence, and
the values, of those commutators is the general solution to the covering problem,
and will allow Bäcklund transforms for those equations. As the construction gives
the Xa the “form” of a connection, it is reasonable to refer to these equations as
“zero-curvature” requirements; it is, however, a generalization of the more usual
approach,11,12 since the Xa’s are still only elements of an abstract Lie algebra of
vector fields, with neither coordinates, nor even their number yet determined.

III. Simple Vector-Field Flows

Since the zero-curvature equations involve the solutions of vector-field-valued
PDE’s, it is worth commenting on some simpler cases first. As well I note that this
is again an area of research where I had considerable guidance and training from
Professor Wichmann. The simplest sort of a flow equation for a vector field may be
written simply as

Z,u = [F,Z] , with F,u = 0 . (3.1)

Locally, on the tangent bundle of a manifold the geometric picture that goes
with this differential equation is the following. The vector fields Z and F are two
directions, in the neighborhood of a point, with F the tangent vector for a curve ΓF

with parameter u. The equation describes the “Lie-dragging” of Z, along this curve.
Taking the initial value as Q ≡ Z(0), we may write down the well-known solution
to this equation:

Z(u) = eu (ad F)Q ≡
∞∑

n=0

(u)n

n!
(ad F )nQ

= Q + u[F,Q] + 1
2u2[F, [F,Q]] + . . . .

(3.2)

A more general case is given by the following situation, where both the (un-
known) vector fields are being dragged, but in different directions. More precisely,
we may take A,R as vertical vector fields over a fiber bundle, but with dependence
on disjoint base manifold variables:

A = AD(w, x)∂wD ,R = RD(w, u)∂wD ,[
A, R

]
= A,x + R,u .

(3.3)
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The general solution of this problem is given13,9 by the following somewhat compli-
cated set of equations, along with a set of constraints on the initial values:

A(x)−A0 =
∫ x

0

dz e−z (adR0)A1 =
∞∑

m=0

(−x)m+1

(m + 1)!
(adR0)mA1 ,

R(u, v)−R0(v) =
∫ u

0

dw ew (ad A0)R1 =
∞∑

k=0

(+u)k+1

(k + 1)!
(adA0)kR1 , (3.4a)

where A0, R0 and either of A1 or R1 may be freely chosen, with the other being
determined by the relation that connects them:

A1 −R1 = [R0 ,A0] . (3.4b)

The constraints are the following doubly countable collection:
[
Am+1 ,Rk+1

]
= 0 , ∀ k, m = 0, 1, 2, . . . , (3.4c)

where Am is the coefficient of xm/(m)! in for A(x), with the same idea for Rk.

IV. Systems of PDE’s for Vector-fields, for Type N

Having given this background, I may now introduce the advertised system of
vector-field-valued PDE’s associated with sl(2, C), which was originally discovered
by Denis Khetselius, who received his Ph.D. in 1996,8 for his work on the twisting
type N prolongation problem associated with the equations given earlier.

From the point of view of Estabrook and Wahlquist, following Cartan, he
rewrote the equations as a first-order system. The underlying manifold then had
2 independent variables, 4 dependent variables, and an additional 13 jet variables,
needed to describe a differential system with fourteen 2-forms in the co-tangent bun-
dle. At an early step in the calculations, he showed that the entire structure would
lose its relationship to the original system of PDE’s unless the associated fibers of
pseudopotentials were infinite dimensional.13 The structure was then expanded in
terms of an infinite series in powers of the “twist” variable, x23.

However, this is not today’s talk. Rather I want to discuss some of the structure
of his results already at the zero-th level in the twist variable, which relate to the
underlying rotational symmetry of the problem. At this point he found himself
searching for two pair of vertical vector fields that depended, disjointly, on 4 and 2
jet variables:

Ei(wA, a, b, e, f) , Mi(wA, u, h) ; i = 1, 2 . (4.1)

They were required to be solutions of a system of PDE’s that seriously generalizes
the earlier, “two-direction” flow problem:

(a∂b + e∂f )E1 − (u∂h)M1 = [E1,M1] ,

(b∂a + f∂e)E1 − (u∂h)M2 = [E1,M2] ,

(a∂b + e∂f )E2 − (h∂u)M1 = [E2,M1] ,

(b∂a + f∂e)E2 − (h∂u)M2 = [E2,M2] .

(4.2)
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Each of these 4 equations is of the form we have already discussed, so that the
earlier method may be applied. However, they are seriously coupled together, which
causes many compatibility equations, which we want now to uncover, and try to
understand.

Each of the two different pairs of (first-order) differential operators constitutes
a pair of generators, analogous to J±, for a realization of the Lie algebra sl(2,C), in
their respective variable spaces:

{L1,L2} = {(a∂b + e∂f ), (b∂a + f∂e)} and {A1,A2} = {u∂h, h∂u} . (4.3)

Therefore each pair generates a third such operator, completing the (usual) genera-
tors for sl(2,C). In different language, treated as a system of first-order operators, the
elements of each pair “conspire” to include their various (non-zero) commutators—as
integrability conditions. As well the commutators of the original unknown functions
enter the picture. In this way we end up with a system of nine equations:

LjEi −AiMj = [Ei,Mj ] , ∀i, j = +, 0,− , (4.4)

where we have given names as follows:




L+ ≡ a∂b + e∂f ,

L− ≡ b∂a + f∂e ,

L0 ≡[L+,L−]

=a∂a + e∂e − b∂b − f∂f ,





{ E+ ≡ E1 , E− ≡ E2 ,

E0 ≡[E+, E−] ,

}





A+ ≡ u∂h ,

A− ≡ h∂u ,

A0 ≡ [A+,A−]

= h∂h − u∂u ,





{M+ ≡M1 , M− ≡M2 ,

M0 ≡[M+,M−] ,

}

(4.5)

To better relate these tangent vectors to the more usual matrix representations of
this algebra, put the coordinates h and u into a vector, hA ≡ (h, u)T , and take
(Si)A

B as the usual three 2 × 2 matrices representing the generators. Then the
differential operators Ai are simply

Ai = hB(Si)A
B

∂

∂hA
,

so that we can see that they are the lift of the defining 2× 2 matrix representation
to the tangent bundle. In a similar way, we may write the tangent-vector fields
Lj as coming from a reducible, 4-dimensional representation, with the variables
{a, b, e, f} as homogeneous coordinates for the group manifold, S3 ⊂ C4. In that
case the quantity s ≡ af +eb is the radius squared for that S3, and is a characteristic
variable for all the Li.

However, there are still more integrability conditions. They arise because
of the remaining commutators of the still-to-be-determined vector fields, Ei and Mj .
The commutators of each pair of these vector fields have, a priori, no requirements
on them, so that their closure is an infinite-dimensional free algebra. In principle we
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could continue writing down all the integrability conditions imposed by that general
free algebra. However, it seems useful to require it to follow the behavior of the
differential operators; i.e., we are led to consider eliminating any additional commu-
tators by reducing this infinite-dimensional algebra down to its smallest interesting
constituent, sl(2,C).

The standard approach to this problem is to divide out the the free algebra
by the Serre relations, i.e., by the ideal generated by the vanishing of the sl(2,C)
commutation relations. However, to surely ascertain what we are discarding, we
first write these divisors in the following form

H± ≡ [[M+,M−],M±]∓ 2M± ,

J± ≡ [[E+, E−], E±]∓ 2E± .
(4.6)

With that notation the next set of integrability conditions are the following first-
order differential equations:

AiH± = [H± , Ei] , LjJ± = [J±, Mj ] (4.7)

The obvious solution given by the vanishing of the divisors does not seem particu-
larly egregious, so that we now append to our problem the additional assumption
that they do in fact vanish. In that case the Mj and, separately, the Ei are also
realizations of sl(2,C), each in terms of their respective variables, and the wA, but
with a form determined by solving the PDE’s.

That assumption puts the system into involution, i.e., all compatibility condi-
tions are now listed, and we can begin to consider the integration of the system.
However, it turns out that these reasonably “pretty” and “simple-appearing” equa-
tions have solutions that look terrible, and which have a presentation that is very
coordinate-dependent! Therefore, although I will in fact describe the general solu-
tion to the problem, I propose to first consider a rather simpler question, by looking
at the subcase. where we forget the dependence of the Ej on the jet variables, which
reduces the system to merely the following triplet of equations, since the subscript
on M is no longer relevant, the equations being the same for different values of it:

AiM+ [Ei,M] = 0 , ∀i = +, 0,− . (4.8)

These equations may be interpreted as asking for “eigenvector fields” of the
“angular-momentum” operators, Ai, in the infinite-dimensional fibers where the M
reside. In this question the Ei are independent of the jet variables, so that it might
be thought that their ad-action, on the M, is like the action of the usual ‘spin’-
operators. Then the entire equation says that M is an eigenvector of the “total
angular momentum” operators, with eigenvalue zero:

{Ai + ad Ei}M = 0 , (4.9a)

or, in a “cleaner” viewpoint on the problem, to ask for invariant vector-field-valued
functions, under the action of sl(2,C), i.e., to require

e−iθ aj(Aj+adEj)M = M . (4.9b)
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There should be “nice” expressions for quantities of this type, I believe. How-
ever, I have not been able to find them. Nonetheless, not having the “nice” expres-
sions, the alternative is to simplify proceed directly, using the techniques discussed
earlier. Perhaps the forms so obtained are in fact acceptably “nice.” However, their
current presentation has more coordinate-dependence than I think is reasonable.
The result may be written in several distinct, equivalent forms:

M =e−(h/u)(ad E+) e−(ln u)(ad E0) Z+

=e−(ln u)(ad E0) e−(uh)(ad E+) Z+ ,

along with the constraint [Z+ , E−] = 0 .

(4.10a)

or the equally valid forms

M =e−(u/h)(ad E−) e+(ln h)(ad E0) Z−

=e+(ln h)(ad E0) e−(uh)(ad E−) Z− ,

along with the constraint [Z− , E+] = 0 .

(4.10b)

Was that result acceptable? If so, then let us now consider the very next level
of simplicity for the equations. Consider the case when the Mi are independent of
{u, h}, instead of the other way around, just discussed. Then our system reduces to
the triplet,

LiE = −[Mi, E ] = −{adMi}E . (4.11)

The more geometrical forms for these equations have, basically, the same structure
as above, except that now there are more jet variables involved in the differential
operators, i.e., the equations are built over a large matrix representation:

{Li + adMi} E = 0 ,

e−iθ aj(Lj+adMj)E = E .
(4.11)

Direct integration of these equations gives more complicated forms, and also several
alternative, equivalent choices. However, now let me present just one of the various
choice for the form of this solution:

Ej = e−(b/a)(adM−) e(ac/s)(adM+) e(ln a)(adM0) Hj(s) . (4.12)

This is more complicated than the previous one, as perhaps it should be: it has
more variables and larger matrices, but it does also have a larger number of distinct
forms, related to ordering, but which I defer.

We should now return to the original problem, where we maintain both sets of
indices. We can also completely integrate this system; however, the results involve
a number of integrations, and the appearance of the solutions depends on their order.
This leaves open to doubt their optimal presentation. Nonetheless, as an example,
here are two of them:

M− = K− +
∞∑

n=0

(− ln h)n+1

(n + 1)!
(adW0)n[W−,Y−]

− h2
∞∑

n=0

(−e/h)n+1

(n + 1)!
(adW+)n

{
e−(ln h)(adW0)Y−

}
,

(4.13a)
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E+ = e−(b/a)(adK+) e(ea/s)(adK−) e−(ln a)(adK0) W+

+ e−(b/a)(adK+)e(ea/s)(adK−)
∞∑

n=0

− ln a)n+1

(n + 1)!
(adK0)nY0

+ e−(b/a)(adK+)
∞∑

n=0

(ea/s)n+1

(n + 1)!
(adK−)nY−

+
∞∑

n=0

(−b/a)n+1

(n + 1)!
(adK+)nY+ .

(4.13b)

The other elements in the solution have the same general structure as the ones
presented here. However, as before, it is still true that one may equivalently write
out the Mi in terms of the variables {h/e, ln e}, instead of {e/h, ln h}. One may
also use other variables for the Ej .

I truly wonder how can such very “pretty” and “simple-appearing” equations
have solutions that look so “nasty.” Surely there should be presentations which are
less coordinate-dependent! Perhaps the simpler versions, involving only invariant
vector-field valued quantities, truly are in the literature somewhere? Nonetheless,
I have yet to find them, and would ask that someone help guide me in the right
direction. However, I doubt that this is the case for these more complicated ques-
tions, involving two sets of indices. Perhaps they are questions involving the “direct
product” of two different “spin” representations, but I do not know.
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