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Abstract
The aim of this paper is to analyse the asymptotic properties of the C-metric,
using a general method specified in the work of Tafel and co-workers (Tafel and
Pukas 2000 Class. Quantum Grav. 17 1559–70, Tafel 2000 Class. Quantum
Grav. 17 4397–408, Tafel and Natorf 2004 Class. Quantum Grav. 21 5397–
407). By finding an appropriate conformal factor �, it allows the investigation
of the asymptotic properties of a given asymptotically flat spacetime. The
news function and Bondi mass aspect are computed, their general properties
are analysed, as well as the small mass, small acceleration, small and large
Bondi time limits.

PACS numbers: 04.20.-q, 04.20.Ha, 04.20.Jb

1. Introduction

The C-metric is commonly regarded as a spacetime describing two black holes accelerating
in opposite directions, under the action of forces represented by conical singularities; see
e.g. [4–7]. It admits boost and rotational symmetry and thus belongs to the large class of
boost–rotation symmetric spacetimes [8]. While not strictly3 asymptotically flat, the Bondi
coordinates still exist and the news function and mass aspect can be computed. One can
start from the news function and asymptotic properties of a general boost-rotation symmetric
spacetime (see equation (26) in [10], (17) in [11] or (99) and (121) in [12]). However, here
we shall adopt another method, and will give the final expression in the explicit form specific
to the C-metric. The method created by Tafel and co-workers [1–3] is especially useful
for such a computation since, unlike the traditional approach of finding an asymptotic form
of a coordinate transformation to Bondi coordinates by comparing expansions of the metric

3 Two generators of J are missing, but the spacetime is still locally asymptotically flat, see [9]; in fact for some
parameter values J + of the C-metric even allows some global spherical sections, see also [8].
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tensor components, it provides a technique to find a specifically ‘calibrated’ form of Penrose’s
conformal factor, from which those quantities can be directly computed. These authors
follow (a weakened version of) Penrose’s definition of asymptotic flatness [13, 14] to obtain
a particular embedding of a given manifold into an unphysical, conformal compactification.
By making a set of constraints on the conformal factor, it can be made quite suitable for
asymptotic analysis, so that it and its various derivatives can be used to determine the desired
news function, Bondi mass and other asymptotic properties. Our goal here is to follow their
format, determining a conformal factor that satisfies their ‘calibration conditions’, as applied
to the C-metric, in appropriate coordinates, to obtain the desired asymptotic properties.

The definition used in [1–3] states that a spacetime, M̃, with a metric g̃ is asymptotically
flat at J + (future null infinity) if and only if the following assumptions are satisfied.

(a) The physical spacetime M̃ is a submanifold of an unphysical spacetime M. The metric,
g, of M is conformally equivalent on M̃ to the metric g̃ of M̃, i.e. we have a conformal
transformation induced by the function �, which is always required to be positive on M̃:

g = �2g̃. (1)

(b) A boundary of M̃ in M contains a three-dimensional null surface J + such that � vanishes
on that boundary although d� must not, as well as a third condition on the derivative.
Using the symbol =̂ to denote that something is being evaluated on that boundary, we
may write these conditions explicitly:

� =̂ 0, d� ˆ�= 0 and gμν�,μ�,ν =̂ 0. (2)

(c) The boundary J + is diffeomorphic to the product R × S2. Thought of as a trivial bundle
over S2 the fibres are generated by the future-directed vector field

v = gμν�,ν∂μ. (3)

(d) The pullback of g under the natural embedding φ : J + → M is the natural metric on the
sphere:

φ∗g = gs. (4)

(e) The Ricci tensor of g̃ satisfies (in the coordinates of M) the boundary condition

R̃μν =̂ 2q �,μ�,ν, (5)

where q is a function.

The method is then to follow a sequence of (allowed) transformations of the natural choice
for the conformal factor �, which arranges in turn for the satisfaction of these requirements,
as we describe in detail below for our metric of interest, a particular choice of the range of
variables for the C-metric that can be described as two black holes accelerating oppositely.
This will also involve various changes of coordinates, heading towards coordinates that have
the Bondi–Sachs form [15, 16] (We also note that the news function for the C-metric has been
computed in some earlier works, see e.g. [17] and general results in [11, 12, 18] using quite
a different method, which can be used as an independent check of that portion of the results
here.)

In the following text, we always use the metric signature (− + ++), unlike in [1–3]; this
will often lead to the associated sign changes in the equations used and referenced herein.
Raising and lowering of the indices, and the covariant derivative, denoted by the symbols
|μ, are all understood to be with respect to the unphysical metric g = �2g̃, unless specified
otherwise. The symbol =̂ is used in the same sense as above, i.e. to denote that the expression
is being evaluated on the J + boundary.
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Once the final conformal factor � ≡ �F is obtained, it would allow us to compute
the Bondi mass aspect M and the news function c,u, important quantities characterizing the
asymptotic properties of the spacetime, namely the total mass m(u) and its change:

m(u) = 1

4π

∫
S2

M(u,�,�) dS = 1

4π

∫
S2

M̂(u,�,�) dS,

m,u(u) = − 1

4π

∫
S2

c2
,u(u,�,�)dS,

(6)

where M̂ is the so-called modified mass aspect and the integral is to be taken over a constant
u slice of J +, i.e. a unit two-sphere. The modified mass aspect differs from M by a four-
divergence constructed from the news tensor (see [2], equation (72)), thus allowing us to use
it in the integral instead of M. The advantage of M̂ lies in its simpler behaviour under the
general BMS group, see [2], equation (36), and below. Also it is preferred in the construction
of the asymptotic four-momentum, which has then correct transformation properties under the
full BMS group, and not just under the Lorentz subgroup (see equations (7) and (8) in [2] for
more details).

The BMS (Bondi–Metzner–Sachs) group mentioned above is the group of asymptotic
symmetries for any asymptotically flat spacetime, also inducing a corresponding mapping of
the J + into itself. Notably, it is a much larger group than the Poincaré group, since it contains
an infinite-dimensional Abelian normal subgroup, the supertranslations. The factor group
obtained by quotienting it out is then isomorphic to the Lorentz group, see [19]. The action
of any supertranslation on J + manifests itself as an angle-dependent translation of the Bondi
time, u → u + α(�,�). This will become useful for the construction of the Schwarzschild
limit in section 5.

The news function c,u and the Bondi mass aspect M also appear in the asymptotic
metric expansion in Bondi coordinates. For the simplest case of axial symmetry, without an
electromagnetic field and without rotation, the Bondi metric reads (see e.g. [15])

g̃B =
(

−V

r
e2β + U 2r2e2γ

)
du2 − 2e2βdudr − 2Ur2e2γ dud�

+ r2(e2γ d�2 + e−2γ sin2 �d�2), (7)

where

γ = c

r
+ O(r−3), U = −(c,� + 2c cot �)

1

r2
+ O(r−3),

β = − c2

4r2
+ O(r−3), V = r − 2M + O(r−1),

(8)

M is the Bondi mass aspect and the u-derivative of c is the news function. This metric can also
be expressed as (see [2], equation (73))

g̃ = −
(

1 − 2M

r
+ O(r−2)

)
du2 − (2 + O(r−2))dudr − (nB

A|B + O(r−1)
)
dudxA

+ r2

(
sAB − 1

r
nAB + O(r−2)

)
dxAdxB, (9)

sAB being the metric of a two-sphere, M the Bondi mass aspect and nAB the news tensor, related
to the news function c,u.

With the general formula for M and c,u determined, we then investigate their behaviour
in various limits of the C-metric. In section 4 the small mass limit is computed, leading to the
Minkowski spacetime with the black hole reduced to a uniformly accelerated particle, and in
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section 5 the small acceleration limit leading to the Schwarzschild limit is examined. Then,
the large and small Bondi time limits are investigated in section 6 for the general case of the
C-metric. Then in the last section, 7, the qualitative behaviour of the Bondi mass aspect M
and the news function c,u that was observed in the small mass and small acceleration limits is
investigated, and compared with the general case.

2. Conformal factor

The C-metric is usually given in the following standard form, which is also most useful for
our calculations:

g̃ = 1

A2(x + y)2

[
−F(y)dt2 +

dy2

F(y)
+

dx2

G(x)
+ G(x)K2dϕ2

]
, (10)

where K is the conicity parameter that determines the physical conicity (the ratio of
circumference around a circle to 2π times the radius, see (B.1), (B.2)) on the axis of
symmetry. The functions −F(−z) = G(z) are, in the vacuum case, cubic polynomials,
usually parametrized in one of the following two forms:

G(x) = −a(x − x1)(x − x2)(x − x3) (11a)

≡ 1 − x2 − 2mAx3, (11b)

where the first form is useful for explicit computations, while the latter is well adapted for
taking limits, as given in sections 4 and 5. There is also no loss of generality associated
with the particular gauge (11b); one can always perform a coordinate transformation which
translates (11a) into (11b) [6]. The C-metric actually describes four distinct spacetimes
[6, 7, 20] specified by the range of x and y coordinates. Our interest is in the most physically
reasonable one, interpretable as black holes accelerated along a segment of the axis, with a
conical singularity; it is defined by considering x ∈ (x2, x3) and y ∈ (−x,∞), where x2 and
x3 are the two largest roots of G(x), see figure 1. The global conformal extension of this
spacetime is schematically depicted in figures 2 and 3. From this and also from a combined

Figure 1. C-metric coordinate ranges.
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Figure 2. Conformal diagram of the x = x2 slice.

Figure 3. Conformal diagram of the x = x3 slice.

Figure 4. A schematic combination of the conformal slices x = x2,3 into a single diagram, using
a small mA flat space intuition. The interior structure of the black hole (blocks T3) and the other
asymptotic regions are not shown, being located under the black hole horizon in the black area.
The black hole horizon still hints at its bifurcation structure, as seen in figures 2 and 3. On J +, the
angular coordinate � and the Bondi time u =̂ û are plotted.

figure 4, we can immediately see that the x = x3 slice corresponds to the inner axial segment
between the accelerating black holes, and the slice x = x2 to the external part of the axis of
the symmetry.
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Since infinity is located at x = −y, and since we would also like to use a null (or retarded)
time coordinate, it is convenient to change the metric into the following form:

g̃ = 1

ρ2

[
−Fdw2 +

2

A
dwdρ − 2dwdx +

dx2

G
+ GK

2dϕ2

]
, (12)

by the transformation ρ = A(x + y), w = t +
∫

dy/F (y).
We now begin our sequence of choices for the switch to an unphysical, conformally

equivalent metric g = �2g̃, such that all the properties (a)–(e), above, are satisfied. The first,
quite natural choice is � ≡ �0 = ρ = A(x + y). Therefore the unphysical metric is now
given by the following:

g = −Fdw2 +
2

A
dwdρ − 2dwdx +

dx2

G
+ GK

2dϕ2, (13)

with its contravariant form as follows:

g−1 = 2A∂w∂ρ + A2(F + G) ∂2
ρ + 2AG∂ρ∂x + G∂2

x +
1

GK2
∂2
ϕ. (14)

However, condition (d) above is not satisfied, i.e. the pullback4 of this metric on J +,
namely

φ∗g ≡ g2 = Gdw2 − 2dwdx +
dx2

G
+ GK

2dϕ2 =
(√

G dw − dx√
G

)2

+ GK
2dϕ2, (15)

is not the metric gS of a unit 2-sphere. To correct this, we improve our �0 by multiplying it
with another factor, so that the resulting new choice, namely �0�S , will satisfy this condition,
which requires

�2
S

[
Gdw2 − 2dwdx +

dx2

G
+ GK

2dϕ2

]
= 4 dξdξ̄

(1 + ξ ξ̄ )2
= d�2 + sin2 � d�2 (16)

presented for both stereographic and standard angular coordinates, which are related as

ξ = ei� tan
�

2
, ξ̄ = e−i� tan

�

2
. (17)

In order to relate the C-metric coordinates to the asymptotic angular coordinates as simply
as possible, we choose ϕ = �. (If we need some other particular coordinates on J + later,
we can always use some BMS transformation later to transform to them.) Comparing first the
coefficients at dϕ2 and d�2, and then the rest, we obtain

�2
S = sin2 �

GK2
,

K
2d�2

sin2 �
= dw2 − 2dwdx

G
+

dx2

G2
=
(

dw − dx

G

)2

⇒ we can choose
Kd�

sin �
= dw − dx

G
≡ KdS

⇒ KS = w −
∫

dx

G
≡ w − Gi(x). (18)

Integrating this, we obtain

S = ln

(
1 − cos �

sin �

)
⇒ eS = tan

�

2
⇒ ch S = 1

sin �
, sh S = − cot �,

�S = 1

ch S KG1/2
. (19)

4 Using expansion F(y) = F(
ρ
A

− x) = −G(x − ρ
A

) = −G(x) + G′(x)
ρ
A

+ O
(

ρ2

A2

)
. Also note that in our

coordinates, pullback of a form simply means to disregard all components containing dρ.
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Using the relation5 between S and �, we can express the stereographic coordinates as follows:

ξ = ei�eS, ξ̄ = e−i�eS. (20)

As already noted there is a sequential approach to modifying the conformal factor and
the coordinates so as to obtain a form that presents clearly that the metric has the desired
asymptotic properties. Following Tafel’s approach [1], we next need to satisfy his equations
(34) and (38), which, in our (− + ++) signature, take the form

�−2�|μ�|μ =̂ 1, �−1 �|μ
μ =̂ 2. (21)

The first may be understood as a calibration condition, which transforms � into a form suitable
for direct insertion into general formulae for the news function and mass aspect. The latter
equation is related to the condition on the determinant of the resulting Bondi–Sachs coordinates
(see equations (7) and (38) of [1]). If conditions (a)–(e) are satisfied, then the latter follows
from the former.

Our �′ ≡ �0�S unfortunately does not yet satisfy (21), and therefore needs to be modified
further. To get such an � we correct �′ using the gauge freedoms given in equation (35) of
[1] and equation (52) of [2], which we repeat below:

� = �′ + η�′2, η =̂ − 1
2 û|μ

μ − �′−1 (1 − �′|ν û|ν). (22)

The coordinate û is an asymptotic Bondi time, which coincides with the Bondi time coordinate
on J +. The function û can be obtained from equation (16) of [1] and equation (48) of [2],
which for our �′ reads

�′|μ∂μ = ∂û =̂ ∂u, �′|μûμ =̂ 1. (23)

Substituting �′ = �0�S leads directly to a differential relation:

A�−1
S (G∂x + ∂w) = ∂û, (24)

which has as a solution the following:

û = 1

AK ch S

∫
dx

G3/2
+ α(ξ, ξ̄ ) ≡ 1

AK ch S
Gj(x) + α(ξ, ξ̄ ), (25)

where we have denoted the integral of G−3/2 as Gj. The explicit form and some other
properties of this function can be found in the appendix, see (D.1), (D.2) and also figure D1.
The quantity α(xA) includes the integration constant of the function Gj. It is an arbitrary
function of the asymptotic angular coordinates only, i.e. it does not depend on the Bondi time
û, and corresponds to the supertranslations contained in the BMS group of the J + coordinate
transformations.

This result for û together with (22) allows us to obtain6 η and therefore the final conformal
factor:

�F = �0�S(1 + η�0�S) , �0 = ρ, �S = 1

K ch S
√

G
,

η = Gj

2AK ch S
(1 − sh2 S) +

KG′

4A
√

G
ch S − sh S

A
√

G
− 1

2
�α, (26)

5 It is also interesting to note that on J + the s coordinate behaves as KdS = dt + dy
F

− dx
G

= dt + O(ρ) =̂ dt .
6 Interestingly, had we used the coordinates (w, ρ,�, ϕ), instead of the more direct choice (w, ρ, x, ϕ), the formula
(22) for û would have simplified significantly, giving η = − 1

2 �û, where � is the Laplace operator on the 2-sphere
and the derivatives are to be taken while holding w constant. This is probably because in the (w, ρ, �, ϕ) coordinates
the angular part of the metric is exactly that of the 2-sphere, and so are the corresponding �A

BC . Effectively, what
happens is that the �−1 (1 − �|ν û|ν) term precisely cancels with − 1

2 (û|w
w + û|ρ

ρ).

7
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where � is the Laplace operator on the 2-sphere: � = (1 + ξ ξ̄ )2∂ξ ∂ξ̄ = ∂�∂� + cot �∂� +
sin−2 �∂�∂�.

Using � ≡ �F in the transition g̃ → g = �2g̃ now finally ensures that both conditions
(21) are satisfied. The dependence on α is also in agreement with the transformation properties
of η under the supertranslations, see [2], equation (32). From now on, we will simply denote
�F as �.

3. Mass aspect and the news function

The final conformal factor � ≡ �F will now be used, according to the scheme outlined at the
end of section 1, to obtain the Bondi mass aspect M and the news function c,u. According to
the procedure described in section 3 of [2], we start with the modified mass aspect M̂ . In our
case the explicit formula [2], equation (44), for the modified mass aspect and its change under
the supertranslations subgroup of the BMS transformations yields, for the final conformal
factor �,

M̂=̂ �−1

(
1 − 2�−2�|μ�|μ +

1

2
�−1�|μ

μ

)
= ch3 S

4AK
√

G

[
K

4G′3

8
− K

2G′ − 1

4
K

4GG′G′′ +
1

6
K

4G2G′′′ −
√

GGj

]
− 1

4
(� + 2)�α

(27)

and its u-derivative

M̂,u =̂ − 1

4
ch S4

[
1 +

1

2
K

2GG′′ − 1

4
K

2G′2
]2

. (28)

The behaviour under the supertranslation α simply follows from the α-dependence of
expression (26) used in �F , in accord with the general formula [2], equation (41).

To find the news function c,u, we first compute the news tensor as described in [2],
equation (67) or (61):

n = −ϕ∗(Lvg) = −2ϕ∗(u|μνdxνdxμ), v ≡ u|ν∂ν

ṅ = −ϕ∗(�−1Lvg) = −2ϕ∗(�−1�|μνdxμdxν) (29)

using also [2], equation (69), which in our case reads

n′
AB = nAB − 2α|AB + �αgSAB.

This leads7 to the news tensor nAB being

nξξ =̂ − 1

ξξ

1

2AK ch S

(
Gj +

K
2G′

2
√

G

)
− 2 α|ξξ , nξ̄ ξ̄ = n̄ξξ , nξξ̄ = 0 (30)

which is consistent with (28), seen by using [2], equation (66).
Now we can directly compare the angular parts of the Bondi metric forms (7) and (9):

ξ 2(sin �)−2nξξ + c.c. = n�� = −(sin �)−2n�� = −2c, (31)

leading to

c = − 1

2AK sin �

[
Gj +

K
2G′

2
√

G

]
+

1

2
α|�� − 1

2
sin−2 �α|��,

c,u = − 1

2 sin2 �

[
1 +

1

2
K

2GG′′ − 1

4
K

2G′2
]

= − K
2

2 sin2 �

[
1 +

1

2
GG′′ − 1

4
G′2
]

+
K

2 − 1

2 sin2 �
.

(32)
7 The same simplification can occur as in the case of η, see remark (6). Also, the α correction vanishes identically
for nξξ̄ , ensuring the tracelessness of nAB.

8
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Next we use our result for c to obtain the Bondi mass aspect M from the reduced mass
aspect M̂ , using the formula [2], equation (72),

M = M̂ − 1
4nAB |AB = M̂ + 1

2 (c,�� + 3c,� cot � − 2c − c,�� sin−2 �), (33)

which we have expressed in terms of the news function c(u,�,�), using relation (31).
Together with one of the two Bondi’s supplementary conditions8, assuming9 c = c(u,�)

only, i.e. it is axially symmetric,

M,u = −c2
,u + 1

2 (c,�� + 3c,� cot � − 2c),u,

we obtain an interesting relation:

M,u = −c2
,u − 1

4

(
nAB |AB

)
,u

⇒ M̂,u = −c2
,u, (34)

in agreement with (28) and [2], equation (66). An explicit calculation of M,u then leads to

M,u = − 1

4 sin4 �

[
1 +

1

2
K

2GG′′ − 1

4
K

2G′2
]2

− 5A2
K

4G3G′G′′′

16 sin4 �

(
α,� + cos �

Gj

AK

)2

+
AK

3G
5
2 G′′′

8 sin4 �

(
α,�� sin � − 3α,� cos � − (2 cos2 � + 1)

Gj

AK

)
. (35)

Substituting (32) into (33), and using the partial derivatives (A.1), we finally obtain the value
for M itself:

M = 1

4 sin3 �

[
1 +

1

2
K

2GG′′ − 1

4
K

2G′2
](

α,�� sin � − α,� cos � − Gj

AK

)
− AK

3G
5
2 G′′′

8 sin3 �

(
α,� + cos �

Gj

AK

)2

+
1

8A
√

G sin3 �

[
1

4
K

3G′3 − KG′ − 1

2
K

3GG′G′′ +
1

3
K

3G2G′′′
]

. (36)

It is interesting to note the absence of a pure α correction term: after putting the α terms
from (30), (27) together into definition (33) one would expect to obtain

− 1
2��α − 1

2�α + 1
2α|AB

AB,

in (36), but surprisingly, due to the simplicity of the Riemann tensor in two dimensions, this
correction term is identically zero for any α(�,�). Therefore the mass aspect M(û,�,�)

transforms itself under the supertranslations û → û′ = û + α(�,�) only due to the explicit
change of û, and due to the change of the partial derivatives10 in 1

4nAB
|AB .

Last but not least, there is an interesting ‘alternative’ result for M. If we had used
∂x
∂� |w=const. instead of ∂x

∂� |û=const. in (33), we would have ended with a much more simple
expression:

M(w) = − K
3G

3
2 G′′′

12A sin3 �
= mK

3G
3
2 ch3 S = m�−3

S .

However, its interpretation is not clear, since w is not a Bondi time11.

8 A consequence of the vacuum Einstein equation, namely R00 = 0, in coordinates (7), see [15] for further discussion.
9 This is just a technical simplification, since the version of Bondi’s analysis covered in textbooks typically assumes
axial symmetry. Of course, the C-metric case covered here is also axially symmetric.
10 In our case this manifested itself via (A.1). Had we been able to express nAB in terms of û, � and � only, α would
have emerged as a result of ∂û

∂�′ = −α,� and ∂û
∂�′ = −α,� in the transformation û′ = û + α, �′ = � and �′ = �.

11 On the other hand w becomes the Bondi time asymptotically in the Schwarzschild limit, see section 5. It might be
possible to regard this mass aspect as a mass aspect for a stationary observer adapted to (at rest with respect to) the
accelerated black hole, which becomes an asymptotic Schwarzschild observer in the A → 0 limit.

9
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4. Small mass limit

In this section we find the limit of the news function c,u and the mass aspect M for small mass
m. Substituting G(x) in the form of (11b) into (32), the news function c,u reduces as follows:

c,u = K
2 − 1

2 sin2 �
− AK

2mx

sin2 �
[x2 − 3] + O(m2). (37)

To obtain this in terms of the asymptotic Bondi coordinates only, we express Gj(x) from (25).
Then, using expansion (A.4) together with (A.5), we arrive to

c,u = κ2 − 1

2 sin2 �
± 2κ2A

sin2 �
m +

ûA2κ3

sin2 �
.

2û2A2κ2 + 3 sin2 �

(û2A2κ2 + sin2 �)3/2
m + O(m2) (38)

where κ denotes the physical conicity between particles (i.e. κ ≡ κext) for the ‘−’ sign, or
outside the particles (κ ≡ κin) for the ‘+’ sign respectively. This is in agreement with the
special case of κext = 1 presented in [20]. It is closely related to news functions given in
[10, 11, 18]. Note that the first term corresponds precisely to the news function of an infinite
cosmic string; see equation (7) in [21] and (25) in [22].

It is of interest to see how exactly the possible singularities of the function c,u are
distributed on J +. First, with the help of our equation (25) , we realize that sign û = sign Gj,
and from the properties of the Gj(x) function (see figure D1) correspondence between the
roots x = x2,3 and poles � = 0, π emerges as

û > 0: � = 0,� = π ↔ x = x3, (39)
û < 0: � = 0,� = π ↔ x = x2.

In general, we have a 2 : 1 relation between � and the x coordinate; for any x2 � x � x3

we have two corresponding values, � and π − �. In the schematic conformal pictures
(figures 4–7), this naturally emerges as � = 0 on one side and � = π on the other.

Figure 5. Conformal diagram depicting the Minkowski limit m → 0. On J +, the Bondi angular
coordinate � is shown, together with the Bondi null time u. The black hole is reduced to a
uniformly accelerated pointlike particle.

10
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Figure 6. Conformal diagram representing the Schwarzschild limit A → 0 and the supertranslation
û′ → û + α, from the perspective of the original Bondi time coordinate û.

Figure 7. Same as in figure 6, but from the perspective of the translated Bondi time coordinate
û′. The emerging conformal diagram of a single black hole (blocks T 23, T 22 and the black hole
interior) is now clearly recognized. See also related comment after (54).

It is obvious that singular behaviour can only occur on the axis, i.e. for � = 0, π .
Expanding around the poles yields the following:

κext = 1:

⎧⎪⎪⎨⎪⎪⎩
c,u = 2mA(sign û + 1)

1

�2
+

2

3
mA(sign û + 1) + O(�2)

c,u = 2mA(sign û + 1)
1

(π − �)2
+

2

3
mA(sign û + 1) + O((π − �)2),

11
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κin = 1:

⎧⎪⎪⎨⎪⎪⎩
c,u = 2mA(sign û − 1)

1

�2
+

2

3
mA(sign û − 1) + O(�2)

c,u = 2mA(sign û − 1)
1

(π − �)2
+

2

3
mA(sign û − 1) + O((π − �)2).

(40)

Therefore by choosing the conical singularity to exist only between the particles, it appears
on J + only for u > 0, that is above the acceleration Cauchy horizon y = −x1, and vice versa
(see figures 1 and 4). It is interesting that, as shown in section 7, this situation occurs not only
in the small m limit, but also persists in the full C-metric.

Also, perhaps not very surprisingly, this behaviour translates into the properties of the
Bondi mass aspect M. Using the same approach as in the case of the news function, application
of (25), (A.4) and (A.5) for (36), while assuming α = 0, yields

M(û,�) = m

2U 5 sin3 �
(u′2(3 cos2 � − 1) − 1)

− m2Au′

U 6 sin3 �
(8u′6 + 24u′4 + u′2(15 cos2 � + 20) + 4) ± m2A

U 7 sin3 �

× (8u′8 + 28u′6 + u′4(6 cos2 � + 34) − u′2(9 cos2 � − 19) + 5) + O(m3),

where U =
√

u′2 + 1, u′ = ûA

sin �
, (41)

and the ‘−’ sign denotes the case with the axis regular outside the particles, i.e. κext = 1, while
the ‘+’ sign assumes the axis being regular between the particles, i.e. κin = 1.

To investigate the integrability of our mass aspect M, we expand (41) near the poles � = 0
(x = x3) and � = π (x = x2), obtaining

κext = 1:

⎧⎪⎪⎨⎪⎪⎩
M = −8m2A2û(1 + sign û)

1

�4
− 16

3
m2A2û(1 + sign û)

1

�2
+ O(1)

M = −8m2A2û(1 + sign û)
1

(π − �)4
− 16

3
m2A2û(1 + sign û)

1

(π − �)2
+ O(1)

κin = 1:

⎧⎪⎨⎪⎩
M = −8m2A2û(1 − sign û)

1

�4
− 16

3
m2A2û(1 − sign û)

1

�2
+ O(1)

M = −8m2A2û(1− sign û)
1

(π − �)4
−16

3
m2A2û(1 − sign û)

1

(π − �)2
+ O(1) .

(42)

As expected, the behaviour is qualitatively the same as in the case of c,u.
Furthermore, we find the mass change12 M,u to be

M,u(û,�) = − 3mu′A
2U 7 sin4 �

(u′2(3 cos2 � − 1) − 1 − 2 cos2 �)

− m2A2

U 8 sin4 �
(8u′8 + 32u′6 + 15u′4(4 − 3 cos2 �) + 5u′2(9 cos2 � + 8) + 4)

± m2A2u′

U 9 sin4 �
(8u′8 + 36u′6 + 6u′4(11 − 3 cos2 �)

+ u′2(41 + 69 cos2 �) − 18 cos2 � + 3) + O(m3),

where U =
√

u′2 + 1, u′ = ûA

sin �
(43)

again; the ‘−’ sign denotes κext = 1, while the ‘+’ occurs for κin = 1.

12 The function M is fortunately sufficiently continuous that the û-derivative commutes with the m → 0 limit.

12



Class. Quantum Grav. 27 (2010) 205020 P Sládek and J D Finley III

On first sight, one may expect, according to (6), an inconsistency with (38), because of the
non-zero term O(m) here in M,u. It is, however, still true that M(tot.)

,u = − ∫ c2
,udS = ∫ M,udS

(if it exists) because the aforementioned term O(m) integrates to zero. This confirms
that the lowest order of mass change is indeed O(m2), as suggested by c,u, and in
analogy with the electromagnetic radiation case, where the Poynting vector, and therefore
the energy radiated per unit time, is proportional to the charge of the accelerated particle
squared.

The expansion near the poles is completely analogous to the case of M and can be simply
obtained by applying the derivative with respect to û to (40):

κext = 1:

⎧⎪⎪⎨⎪⎪⎩
M,u = −8m2A2(1 + sign û)

1

�4
− 16

3
m2A2(1 + sign û)

1

�2
+ O(1)

M,u = −8m2A2(1 + sign û)
1

(π − �)4
−16

3
m2A2(1 + sign û)

1

(π − �)2
+ O(1),

κin = 1:

⎧⎪⎪⎨⎪⎪⎩
M,u = −8m2A2(1 − sign û)

1

�4
− 16

3
m2A2(1 − sign û)

1

�2
+ O(1)

M,u = −8m2A2(1− sign û)
1

(π − �)4
− 16

3
m2A2(1− sign û)

1

(π − �)2
+ O(1).

(44)

5. Schwarzschild limit

It is also possible to investigate the other situation, which is the case where m is kept finite
and non-zero while A → 0. Intuitively, this should lead to a single static black hole,
i.e. to the Schwarzschild solution. To show that this is indeed true, we start with the
physical metric (10). In order to get the correct limit of the metric tensor, we have to
parametrize the coordinates and the parameters A, m, K, characterizing the C-metric solution.
Perhaps the most physically plausible way to do this is by using A as a parameter13, while
holding the horizon area A and the conicity κext,in on one of the axial segments constant. This
leads to (see (B.2), (C.3))

κext = 1: K = 1 + 2m′A + 11
2 m′2A2 − 4m′3A3 + O(A4)

m = m′ − m′2A − 21
2 m′3A2 + 71

2 m′4A3 + O(A4)
(45)

κin = 1: K = 1 − 2m′A + 11
2 m′2A2 + 4m′3A3 + O(A4)

m = m′ + m′2A − 21
2 m′3A2 − 71

2 m′4A3 + O(A4),

where the horizon area A = 16πm′2. Together with a simple coordinate rescaling:

y = y ′A−1

t = t ′A
x = x ′

⇒
A2F = −A2 + y ′2 − 2my ′3 = −A2 + F ′ + O(A), F ′ = y ′2(1 − 2m′y ′),

G = 1 − x ′2 − 2mAx ′3 = G′ − 2mAx ′3, G′ = 1 − x ′2,

(46)

13 In the m → 0 limit, A is precisely the acceleration of the test particle which the black hole becomes.
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the metric g̃ takes the following reduced form:

g̃ = 1

A2(x + y)2

[
−Fdt2 +

dy2

F
+

dx2

G
+ GK

2dϕ2

]
= 1

(Ax ′ + y ′)2

[
(F ′ + O(A))dt ′2 +

dy ′2

F ′ + O(A)
+

dx ′2

G′ − 2mAx ′3 + (G′ − 2mAx ′3)K2dϕ2

]
→

A→0

1

y ′2

[
−F ′dt ′2 +

dy ′2

F ′ +
dx ′2

G′ + G′dϕ2

]
, (47)

which is indeed the Schwarzschild metric14 as can be seen using the transformation

y ′ = 1/R

x ′ = cos θ
⇒ g̃ = −

(
1 − 2M

R

)
dt2 +

dR2(
1 − 2M

R

) + R2(dθ2 + sin2 θdϕ2), (48)

where the Schwarzschild mass M equals the mass m′, confirming the condition A = constant.
Now we can proceed to compute the limits of various asymptotic quantities, i.e. obtain

the asymptotic expansion of the metric in Bondi coordinates. The strategy is to obtain a given
quantity f (û,�) as a series in A with coefficients being a function of the limiting coordinates
θ and u′ only. This is however not as straightforward as the m → 0 case, as we will see
when computing the limit of û, which we would like to coincide with the Bondi time for the
Schwarzschild metric. To check whether this can be satisfied, it is useful to realize the relation
between the Schwarzschild Bondi time and the limit of the w coordinate (see (12)):

w = t +
∫

dx

F
= At ′ +

∫
Ady ′

F ′ + O(A)
=
(

t ′ +
∫

dy ′

F ′

)
A + O(A2) ≡ w′A + O(A2)

while also: t ′ +
∫

dy ′

F ′ = t ′ −
∫

dR

1 − 2M
R

≡ t ′ − r∗ ≡ u′, (49)

where u′ is precisely the Bondi null time15 onJ + of the Schwarzschild metric, with u′ constant,
being the future directed null cones, as required. In addition, by a suitable redefinition16 of
t ′ → t ′ + O(A), we can make the w′ ↔ u′ correspondence exact, i.e. w′ = u′.

The idea is now to use (18) to express x as a function of � and w′, and insert this into (25)
to obtain a relation between û and u′ as a function of � only. The terms lower than O(A) of
this function will then be the needed supertranslation.

We start with the expansion of (18), using (A.2) and (C.3):

κext = 1: S = − arctanh x +

(
u′ − 2m′ ln(1 − x) − m′

1 − x2

)
A + O(A2)

(50)

κin = 1: S = − arctanh x +

(
u′ − 2m′ ln(1 + x) − m′

1 − x2

)
A + O(A2).

Inverting it, we obtain, with the help of (19),

κext = 1: x(u′,�) = cos � + [sin2 �(u′ − 2m′ ln(1 − cos �)) − m′]A + O(A2)
(51)

κin = 1: x(u′,�) = cos � + [sin2 �(u′ − 2m′ ln(1 + cos �)) − m′]A + O(A2).

14 To be more precise, it is (for K �= 1) the Schwarzschild metric with a conical singularity.
15 This can also be verified by comparing the Schwarzschild metric in the (u, r, �, �) coordinates with (9), or by a
direct application of (23).
16 This, of course, does not spoil the limit (47).
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Since we also have x = x ′ = cos θ , this expansion confirms the expected coincidence of �

and θ in the limit A → 0. Using (51), we can now express û (25) as

κext = 1: û = cos �

A
+ u′ − 2m′ cos � − 2m′ ln(1 − cos �) − 3m′ + O(A)

(52)
κin = 1: û = cos �

A
+ u′ + 2m′ cos � − 2m′ ln(1 + cos �) − 3m′ + O(A).

Apparently the limit of û for A → 0 is diverging and is obviously not the Bondi time for the
Schwarzschild metric. However using a specific supertranslation, it can be corrected:

û → û′ = û + α(�),

α(�) =

⎧⎪⎪⎨⎪⎪⎩
κext = 1: − cos �

A
+ 2m′ cos � + 2m′ ln(1 − cos �) + 3m′

κin = 1: − cos �

A
− 2m′ cos � + 2m′ ln(1 + cos �) + 3m′

, (53)

which ensures that limA→0 û = u′. The supertranslation17 and the limit are qualitatively
depicted in figures 6 and 7. The asymmetric character of the limit with respect to � = 0, π is
necessary to arrive at a single black hole, and is a direct consequence of the cos �/A term in
(52). When the A → 0 limit is achieved, the poles x = x2,3 correspond to

A → 0 ⇒
{
θ = 0 ↔ � = 0 ↔ x = limA→0 x3 = 1
θ = π ↔ � = π ↔ x = limA→0 x2 = −1

. (54)

This limit is consistent with (39), since, as can be seen in figure 7, the three (upper, lower
and left) diamond-shaped blocks vanish, leaving only one block, with the left part being
the axial slice T23, i.e. x = x3 = 1 ↔ θ = � = 0, and the right part being T22, i.e.
x = x2 = −1 ↔ θ = � = π .

Now when the limiting process is properly set up, we continue to examine the behaviour
of the news function and the mass aspect. In general, we use (45), (46), (50) and (53) to obtain
the A → 0 asymptotic expansion of those quantities.

The c,u expression (32) reduces to

κext = 1:

c,u = −(cos θ − 2) cotan2 θ

2
m′A + cotan2 θ

2

(
2 cos θ(cos θ − 2)

(
u′

m′ − 2 ln(1 − cos θ)

)
−3

2
cos2 θ +

7

2
+ 2

2 − cos θ

sin2 θ

)
m′2A2 + O(A3)

κin = 1: (55)

c,u = −(cos θ + 2) tan2 θ

2
m′A + tan2 θ

2

(
2 cos θ(cos θ + 2)

(
u′

m′ − 2 ln(1 + cos θ)

)
− 3

2
cos2 θ +

7

2
+ 2

2 + cos θ

sin2 θ

)
m′2A2 + O(A3)

where we have again expressed the result for the case of the conical singularity vanishing
either between (κin = 1) or outside (κext = 1) of the accelerated black holes, using (45). The

17 The logarithmic term appears to be unavoidable and a divergence of this type is always present regardless of higher
order differences of the limiting scheme. It seems to be a manifestation of the presence of the conical singularity
on the respective axial segment; it always diverges on the pole(s) that correspond to the axial segment exhibiting a
conical singularity (see (54) and figure 6).
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behaviour near the poles is then

κext = 1:

⎧⎪⎨⎪⎩
c,u = (4m′θ−2 + O(θ0))A + (8m′2θ−4 + O(θ−2))A2 + O(A3)

c,u =
(

3

2
m′(π − θ)2 + O((π − θ)4)

)
A −

(
3

2
m′2 + O((π − θ)2)

)
A2 + O(A3),

κin = 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c,u =
(

− 3

2
m′θ2 + O(θ4)

)
A −

(
3

2
m′2 + O(θ2))

)
A2 + O(A3)

c,u =
(

− 4m′(π − θ)−2 + O((π − θ)0)

)
A

+

(
8m′2(π − θ)−4 + O((π − θ)−2)

)
A2 + O(A3)

(56)

which is an expected result, consistent with an intuitive approach encouraged by figure 6. In
both cases c,u is always regular at one pole regular and diverging at the other, because the
supertranslation cancels the symmetry of θ ↔ π − θ . (By regularity here we mean that the
integral

∫
Iε

c2
,u sin θ dθ exists on some small neighbourhood Iε of a given pole.) As we already

know, θ = 0 ↔ x = 1 and θ = π ↔ x = −1, and since in the C-metric we cannot eliminate
the conical singularity on both axes (axial slices), at least one pole must be singular.

We may now continue with the computation of the Bondi mass aspect M. First we
check the behaviour of the reduced mass aspect M̂ . Employing again expansion (50) and
supertranslation (53) in equation (27), we find

M̂ = m′ + O(A). (57)

The limit of M̂ is well behaved with the result being exactly what one would expect from limit
(47) of the metric, compared to equation (7).

However, as a more detailed computation shows, the terms of O(A) and higher diverge
near both poles at least as O(θ−3) and O((π − θ)−3) respectively. Therefore the integral of
M̂ over the 2-sphere, i.e. the total mass of the system, is defined in the limit itself only, while
for an arbitrarily small non-zero A, the integral does not exist. This is not so surprising; we
had similar behaviour in the case of the news function c,u.

Still, we might have expected that, at least near one pole, the situation could be made
regular. This is not true for M̂ , but as we show below, it can18 be done in the case of M.

Proceeding to find M, we find

κext = 1: M = m′ +

(
3 cos θ

(
1 + 2 ln(1 − cos θ) − u′

m′

)
+ 5

)
m′2A + O(A2)

(58)

κin = 1: M = m′ +

(
3 cos θ

(
1 + 2 ln(1 + cos θ) − u′

m′

)
− 5

)
m′2A + O(A2).

This confirms that in the limit A → 0 the Bondi mass equals the Schwarzschild mass. Series
expansion near the poles θ = 0, π then reveals

κext = 1:

⎧⎪⎪⎨⎪⎪⎩
M = m′ +

((
3 + 6 ln

θ2

2
− 3

u′

m′ + 5

)
m′2 + O(θ2)

)
A + O(A2)

M = m′ +

((
− 3 − 6 ln 2 + 3

u′

m′ + 5

)
m′2 + O((π − θ)2)

)
A + O(A2),

18 Of course, the integral of M still does not, and cannot, exist. If it existed, it would, according to equation (37) in
[2] and the remark below it, have to be equal to the integral of M̂ , which is diverging.
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κin = 1:

⎧⎪⎪⎨⎪⎪⎩
M = m′ +

((
3 + 6 ln 2 − 3

u′

m′ − 5

)
m′2 + O(θ2)

)
A + O(A2)

M = m′ +

((
− 3 − 6 ln

(π − θ)2

2
+ 3

u′

m′ − 5

)
m′2 + O((π − θ)2)

)
A + O(A2).

(59)

This seems rather surprising, since it appears as if the mass aspect M was integrable over the
whole 2-sphere. But again, a more detailed analysis reveals that the terms O(A)2 and higher
all diverge at the poles where κ �= 1, leading to the same qualitative behaviour as in the case of
c,u. The integral of M over the entire 2-sphere therefore does not exist, as we have expected,
unless we restrict to the terms of O(A) or to the limit A = 0 itself.

An interesting question arises concerning the relation of the Schwarzschild limit A → 0
and the Minkowski limit m → 0. We will shortly address this issue by investigating the small
mass limit of the coordinates used in the Schwarzschild limit. First, we express the function x
as x(w,�), using the inverse of the expansion of Gi(x) (see (A.2)). Assuming axial regularity,
i.e. K = 1 + O(mA), this leads to

x(w,�) = th(w − KS) = ch S sh w − sh S ch w

ch S ch w − sh S sh w
+ O(mA) = cos � ch w + sh w

ch w + cos � sh w
+ O(mA).

(60)

Comparing this to the Schwarzschild limit formulae for the θ and u′ coordinates (see (48) and
(49)) we obtain the desired relation:

cos θ = cos � ch u′A + sh u′A
ch u′A + cos � sh u′A

+ O(mA). (61)

In terms of the complex stereographic coordinate ξ , related to the angle � via (17), and the
coordinate ζ related in the same way to θ , this translates into a simpler formula:

ζ = ξe−u′A, (62)

in which we recognize the Lorentz boost along the z axis, with β = − tanh u′A being the
velocity. This confirms the intuitive idea that the small mass limit of the Schwarzschild limit
A → 0 and the Minkowski limit m → 0 are related by a Lorentz boost along the symmetry
axis, with the velocity increasing as u′ increases; the Schwarzschild limit corresponds to the
observer at rest with respect to the black-hole– particle, which, on the other hand is accelerating
along the axis in the Minkowski observer’s coordinate frame. They should therefore be related
by a boost, with the velocity as a function of the acceleration and time.

Another way to understand this is to realize that different Bondi coordinates must be
related by a transformation belonging to the BMS group19, which, roughly speaking, consists
of boosts, rotations and supertranslations. Since in both limits the angular coordinates were
adapted to the symmetry axis, they must be related only by a pure boost, or, in general, modulo
some additional supertranslation.

6. Bondi time limit u → 0 and u → ±∞
The explicit formulae for the functions Gj(x) are given in the appendix, equations (D.1) and
(D.2). They allow us not only to numerically compute the mass aspect and the total mass as
their integral over the entire J +, but also to obtain some analytic results.

Although the analytical computation of the total mass does not seem feasible in the general
case, there exists a well-defined limiting behaviour for the Bondi time u → 0± and u → ±∞.

19 See, for example [2], section 3.
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These limits correspond to the observer located on J + approaching the event of the black hole
hitting J , or respectively, him moving to the time future or spatial infinity (see figure 4). The
total mass can be expressed using (6), which in our case leads to

m(u) = 1

2

∫ π

0
M̂(u,�) sin � d� =

∫
I

J (u, x)M̂(u, x) dx,
I =

{
u>0:(xu, x3)

u<0:(x2, xu)

Gj(xu) = uAK

J = sin � det
∂(u,�)

∂(u, x)
= − sin2 �

G
3
2 Gj cos �

=
(α=0)

−u2A2
K

2

Gj2G
3
2

sign(Gj cos �)√
Gj2 − u2A2K2

(63)

where we have used M̂ instead of M to simplify the following calculations. These expressions
allow us to compute the various limits with respect to u that we want. We will have to use the
first one for u → ±∞ and the latter for the u → 0 limit, in order to be able to swap

∫
I

and
lim

u→±∞,0
. Also the mass will be finite in the first place in the u > 0 or u < 0 case only when

we set the conicity parameter K to have κin = 1 or κext = 1 respectively. Then, we obtain the
following limiting behaviour for the mass m(u):

κin = 1: m(u) = 24x4
1x4

2x
4
3

35A8(x3 − x1)6(x3 − x2)6

1

u7
+ O(u−8) , as u → +∞

(64)

κext = 1: m(u) = 24x4
1x4

2x
4
3

35A8(x2 − x1)6(x3 − x2)6

1

u7
+ O(u−8) , as u → −∞.

For the limit of u → 0± the evaluation of the integral is more complicated. In order to
obtain an explicit result, we restrict the supertranslation freedom to the class of α = C sin �

AK .
Since this is equivalent to Gj → Gj′ = Gj + C, it allows us to use the simplified formulae of
α = 0, which can be explicitly integrated, and then substitute Gj → Gj + C. Using this in the
series expansion of JM̂ in u we obtain the following:

m(u) =
∫
I

J (u, x)M(u, x)dx =
∫
I

J (u, x)M̂(u, x)dx

= 1

u

∫
I|xu=x0

(
3K

2G′3 − 24G′ − 6K
2GG′G′′ + 4K

2G2G′′′

96A2G2
− Gj

4A2K2G
3
2

)
dx + O(1)

= 1

u
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for I = (x2, xu) ⇔ u<0:

− (x1 + x3 − x2)K2

2A2(x3 − x2)(x2 − x1)
−
[

24 − 3K
2
2G

′2

96A2G
+

G′′′xK
2
2

24A2
− C2

2

8A2K
2
2

]
|x=x0

for I = (xu, x3) ⇔ u>0:

− (x1 + x2 − x3)K3

2A2(x3 − x2)(x3 − x1)
−
[

24 − 3K
2
3G

′2

96A2G
+

G′′′xK
2
3

24A2
− C2

3

8A2K
2
3

]
|x=x0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
+ O(1), (65)

where x0 is chosen so that Gj(x0) = 0, and the quantities Ci = 0 are the constant terms in
the expansion of Gj, see (D.1), (D.2), (D.4), while Ki is a conicity parameter corresponding
to the physical conicity κi = 1 (see (B.2)). Again, the conicity has been set for the conical
singularity to disappear on the respective axis segments (either x = x2 or x = x3) in order for
the result to be finite in the first place.

To summarize this, we have shown that in the absence of a conical singularity, the Bondi
mass behaves as 1/u7 for large null time, u → ±∞, and as20 1/u for time close to the event
of the black hole reaching J + when u → ±0.
20 At least for the α = C sin �

AK
class of supertranslations.
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The leading coefficients in the above asymptotic expansions are strictly positive, causing
the Bondi mass to be strictly non-increasing, as required by general theorems, demonstrated
by, e.g., (6). In the u → ±∞ case this is obvious; for u → 0± see the proof in appendix E.

7. Regularity near the poles in the general case

In sections 4 and 5, concerning the small mass and small acceleration limit, we have
encountered a rather similar behaviour of the Bondi mass and the news function with respect
to the regularity of the corresponding segment of the symmetry axis; the above-mentioned
asymptotic quantities were only diverging at the pole if and only if the respective axial segment
contained a conical singularity. This suggests that such behaviour may be preserved even in
the general case, and we investigate it in this section.

To analyse the Bondi mass (36) and the news function (32) directly is rather involved, in
the sense that an analytical expression of M and c,u in terms of the Bondi coordinates û, � is
extremely complicated21. However, as we show below, the situation near the poles x2,3 can be
investigated analytically, even in the general case.

To obtain the behaviour of the news function c,u and of the Bondi mass M near the poles22

at � = 0 and π , in the full relativistic case, we substitute the expansions for G(x), considering
the case that G(x) is a third-order polynomial:

G(x) = G(x2 + ξ2) → G(x) = G′(x2)ξ2 + G′′(x2)
ξ 2

2

2
+ G′′′(x2)

ξ 3
2

6 (66)

G(x) = G(x3 − ξ3) → G(x) = −G′(x3)ξ3 + G′′(x3)
ξ 2

3

2
− G′′′(x3)

ξ 3
3

6
and analogically for its derivatives, into (32) and (36) respectively. The conicity parameter is
expressed in terms of the physical conicity via (B.2). For c,u, this leads to

c,u = 1

2 sin2 �

(
1 − κ2

i

)
+

G′′′
i κ2

i

G′
i sin2 �

ξ 2
i +

1

sin2 �
O(ξ 3

i ) , i = 2, 3, G
(j)

i ≡ G(j)(xi).

(67)

Noting that
1

sin �
= 1

AK(û − α)

(
1√
ξ2,3

+ O(
√

ξ2,3)

)
, (68)

we see that only23 the first term in (67) can diverge for κ2,3 �= 1. In other words this means
that on the axial slices x = x2,3 we indeed can again, by choosing the axis to be regular either
at x = x2 or at x = x3, eliminate the singular behaviour of c,u on J +, either for û − α > 0, or
û − α < 0 respectively24.

Now for the Bondi mass aspect M, we again use the above-mentioned approach and
arrive at

M = 1

4

εiκi

(
κ2

i − 1
)

A
√|G′

i | sin3 �

1√
ξi

+
1

4

κ2
i − 1

sin4 �
(α′ sin � cos � − α′′ sin2 � + u − α)

+
3

16

κi

(
κ2

i − 1
)

A sin3 �

G′′
i

|G′
i |

3
2

√
ξi +

εiκi

384A

G′
iG

′′′
i

(
72κ2

i − 40
)− 15G′′2

i

(
κ2

i − 1
)

|G′
i |

5
2 sin3 �

ξ
3
2
i

21 This is so because we would have to express x as a function of � and û, using the inverse of Gj(x), and then
substitute it into G and its derivatives.
22 See (39), (54) for xi correspondence.
23 Assuming that lim�→(0,π) α �= u, which is where the black holes approach J +.
24 See also the conformal diagrams in figures 2–4.
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− 1

4

κ2
i G′′′

i

G′
i sin4 �

(α′ sin � cos � − α′′ sin2 � + u − α) ξ 2
i

−
[

AG′′′
i√|G′

i | sin5 �
(α′ sin � + cos �(u − α))2 +

1

48A

G′′′
i G′′

2

|G′
i |

5
2 sin3 �

]
ξ

5
2
i + O

(
ξ 3
i

)
,

(69)

where εi = +1,−1 for i = 2, 3. Noting (68) we see that also in this case, for κ2,3 = 1, the
mass aspect M does not diverge near the poles.

This in fact even holds for any α(�), which is at least25 C2 on a neighbourhood of � = 0
and � = π , as can be seen by analysing the �-dependent terms in the numerator:

A(�) ≡ α′ sin � cos � − α′′ sin2 � + u − α , B(�) ≡ α′ sin � + cos �(u − α).

For the situation near � = 0,

1. we first assume that α is bounded at � = 0, and rewrite A and B as

A(�) = 5(α sin �)′ cos � + α sin2 � − (α sin2 �)′′ + u − 4α ,
(70)

B(�) = (α sin �)′ + (u − 2α) cos �.

Now, there is a particulary nice limiting property of the expressions (α sin �)′ and
(α sin2 �)′′ at �0 = 0:

(α sin �(�))′|�=�0
= lim

ε→0

sin(�0 + ε) α(�0 + ε) − sin(�0) α(�0)

ε

=
�0=0

lim
ε→0

sin(ε) α(ε)

ε
= α(0)

(α sin2 �(�))′′|�=�0=0 = lim
ε→0

sin2 2ε α(2ε) − 2 sin2 ε α(ε) − sin2 0 α(0)

ε2
= 2α(0) , (71)

which, together with (70), ensures the finiteness of A and B at � = 0.

2. In the alternative case, of diverging α, lim�→0 α(�) = ±∞, and we can rewrite A and B
in terms of β = 1/α:

A(�) = (β sin2 �)′′

β2
− 2

(β sin �)′2

β3
− (β sin �)′

β2
cos � +

sin2 �

β
+ u,

B(�) = − (β sin �)′

β2
+ u cos �. (72)

Using the same idea as in the previous case, we see from (71) that both A and B diverge
at worst as 1/β. But this does not spoil the finiteness of (69), since A and B only occur as
A(�)

sin4 �
and B2(�)

sin5 �
(see (36)), and according to (68), these 1/ sinn(�) factors are more than

enough to compensate for the divergence of the excessive α in the numerator.

The case of � → π is completely analogous and leads to the same conclusion.
Therefore, as illustrated in figure 8, even in the general C-metric case, the conclusions

of sections 4 and 5 hold; the Bondi mass and the news function cannot be made regular if
the corresponding axial segment contains a conical singularity, and conversely, if the axial
segment is regular, those quantities are regular and integrable at the corresponding pole.

25 So its second derivative in (69) is defined.
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(a) κin=1 (b) κext=1 (c) κext= 1, κin= 1,
note that κin>κext

Figure 8. Schematic conformal diagrams for the three possible cases of the conical singularity
location and its influence on the J + regularity. See also conformal diagrams of four prototypes of
a general boost-rotation symmetric spacetime given in figures 3–6 in [8].

8. Conclusions

We have successfully applied the method of Tafel and co-workers to obtain the news function
and the Bondi mass aspect of the C-metric. These quantities have been obtained without any
approximation, for the general allowed values of all C-metric parameters including the axial
conicity. Our news function (32), for the special case of the conicity parameter K = 1, is the
same as the one presented in [17] for the special case without rotation, electric and magnetic
charge and without the NUT parameter. Also, our m → 0 limit (38) of the news function,
for the case κext = 1, is equivalent to the formula presented in [12], equations (144) and
(145) (the general κ case is not discussed there). The overall form of the news function and
of the mass factor is compatible with the general expressions for a boost-rotation symmetric
spacetime presented in [10–12, 18, 20]. More specifically, if the news function (32) is used to
obtain the function K(w) of [12], equation (98), from which the mass aspect change M,u can
be computed via [12] (118–120), the result is the same as presented here in (35). Apart from
those general formulae, however, there has, to the authors’ knowledge, not been any published
explicit result for the Bondi mass aspect M(u,�) or M,u(u,�) of the C-metric.

In sections 4 and 5 the behaviour of the news function and of the mass aspect has been
investigated under the small mass limits m → 0 and the small acceleration limit A → 0. The
regularity of M and c near poles � = 0, π has been found to reflect the presence of the conical
singularity on the associated axial segment; this has been confirmed in section 7 for a general
C-metric.

In section 6 the total Bondi mass of the C-metric has been explicitly integrated for special
limiting values of the Bondi time and found to be, in the regular cases when the integral is
defined, proportional to 1/u7 for large null time, u → ±∞ (63) and behaving as 1/u for time
close to the event of the black hole reaching J + when u → ±0 (65). The leading coefficients
in these asymptotic expansions in u have been explicitly expressed, and shown to be strictly
positive, causing the Bondi mass to be strictly non-increasing, as required by general theorems.

Section 7, as noted above, then contains the analysis of the regularity of the news function
c,u and of the mass aspect M in the general case. This means that no approximation or limit
of the original C-metric is assumed, and also the Bondi time û includes freedom given by a
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general supertranslation α(�). The results are completely analogous to the limiting cases of
sections 4 and 5.
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Appendix A. Some details of the computations

To obtain the Bondi mass aspect, the news function and to perform the asymptotic calculations
on J + in general, the partial derivatives corresponding to the coordinate transformation
(û,�) ↔ (w, x) are often needed. Here, according to equations (25) and (18), the complete
transformation Jacobian for the general case α ≡ α(�,�) �= 0 is given:

J =

⎛⎜⎜⎝
∂û

∂w

∂û

∂x

∂�

∂w

∂�

∂x

⎞⎟⎟⎠ = sin �

KG

⎛⎝cos �

AK
GGj + G

∂α

∂�
,

1

A
√

G
− cos �

AK
Gj − ∂α

∂�

G −1

⎞⎠

J−1 =

⎛⎜⎜⎝
∂w

∂û

∂w

∂�

∂x

∂û

∂x

∂�

⎞⎟⎟⎠ = K

sin �

⎛⎜⎝A
√

G , 1 − cos �

K

√
GGj − A

√
G

∂α

∂�

AG
3
2 , −cos �

K
G

3
2 Gj − AG

3
2
∂α

∂�

⎞⎟⎠

det J = − sin2 �

AK2G
3
2

.

(A.1)

In sections 4, 5 on limits, we used the mA series of various expressions used in the general
calculations. For reference, the most important formulae are included here:

Gi = arctanh x +

(
1

1 − x2
+ ln(1 − x2)

)
mA

+

(
− x(8x4 − 25x2 + 15)

2(1 − x2)2
+

15

4
ln

1 − x

1 + x

)
m2A2 + O(m3A3) (A.2)

Gj = x√
1 − x2

+
3x2 − 2

(1 − x2)
3
2

mA +

(
x(23x4 − 35x2 + 15)

2(1 − x2)
5
2

− 15

2
arcsin x

)
m2A2

− 35x8 − 280x6 + 560x4 − 448x2 + 128

2(1 − x2)
7
2

m3A3 + O(m4A4) (A.3)

x = Gj√
1 + Gj2

+
2 − Gj2

1 + Gj2
mA +

(
15 arcsin

Gj√
1 + Gj2

+ 5Gj3 − 27Gj

)
m2A2

2(1 + Gj2)
3
2

+ O(m2A2)

(A.4)
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κext = K(1 − 2mA) + O(m2A2), κin = K(1 + 2mA) + O(m2A2)

←→ K = κin

(
1 − 2mA +

15

2
m2A2 − 32m3A3

)
+ O(m4A4) (A.5)

= κext

(
1 + 2mA +

15

2
m2A2 + 32m3A3

)
+ O(m4A4),

where xi are the roots of the G(x), K is the conicity parameter and κin, κext are the conicities of
the corresponding axial segments, see also appendix B. Interestingly, the conicity parameter
K can, in the light of (A.5), be interpreted as an average of the external and internal physical
conicity, up to the second order of A.

Appendix B. Conicity of the C-metric

For a general axially symmetric 2-space, g2 = gRR dR2 + gφφ dφ2, with the coordinate R such
that the axis is located at R = 0, the definition of the conicity leads to the formula

κ = lim
‘distance to axis′→0

‘circumference’

2π×‘distance to axis’
= lim

R→0

∂
∂R

√
gφφ√

gRR

∣∣∣R=0

. (B.1)

In the case of the C-metric (10), we find that

κ1,2,3 = K

2
|G′||x=x1,2,3 , (B.2)

so the K parameter can really adjust κ on a specific segment of the symmetry axis. For the
domain discussed here26, the axis segment between the particles lies at x = x3 and the segment
outside lies at x = x2. We will therefore use κext ≡ κ2 and κin ≡ κ3 as synonyms in the text.

Appendix C. Horizon area

The Schwarzschild limit A → 0 was done holding the horizon area constant. Using a
straightforward integration, we find

A =
∫

∂S2

√
gdS2 =

∫ 2π

0

∫ x3

x2

√
gxxgϕϕ dxdϕ = 2πK

A2

x3 − x2

(x2 − x1)(x3 − x1)
. (C.1)

Performing an expansion in A leads to

κext = 1: M2
0 ≡ A

16π
= m2 + 2m3A + 26m4A2 + 69m5A3 + O(A4)

(C.2)
κin = 1: M2

0 ≡ A
16π

= m2 − 2m3A + 26m4A2 − 69m5A3 + O(A4)

where M0 is the mass of a Schwarzschild black hole with the same horizon area A as the
accelerated black hole of the C-metric. Inverting this series, we finally obtain (45)

κext = 1: m = m′ − m′2A − 21

2
m′3A2 +

71

2
m′4A3 + O(A4)

(C.3)
κin = 1: m = m′ + m′2A − 21

2
m′3A2 − 71

2
m′4A3 + O(A4).

26 Segment x = x1 does not lie in our spacetime; see the beginning of section 2 and also figure 1.
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Figure D1. Plot of the G(x) and Gj(x) functions.

Appendix D. Explicit formula for the Gj function

The function Gj(x) is a crucial part of the formula for the Bondi time û and propagates
into other results as well. While there is no problem with its qualitative description (see
figure D1) or numerical computation, an analytical expression would certainly be helpful as
well. Fortunately, it appears to be possible to express the defining integral

Gj(x) =
∫

dx

G(x)
3
2

= 1

a
3
2

∫
dx(

(x − x1)(x − x2)(x3 − x)
) 3

2

≡ 1

a
3
2

∫
dx

(ξ1ξ2ζ3)
3
2

,
ξi = x − xi

ζi = −ξi,

in an explicit form using elliptic functions. Here, we present two equivalent forms27, differing
only by an integration constant:

Gj(2)(x) = −bd
1
2

21

(
d2

21 + d2
32 + d2

31

)
E(z2, k2) + bd

1
2

21(d31 + d21) F(z2, k2)

+ b
ξ1ξ2d

2
21 + ξ2ξ3d

2
32 + ξ3ξ1d

2
31√

ξ1ξ2ζ3
+ C2

with z2 =
√

ξ2

d32
=
√

x − x2

d32
, k2 = i

√
d32

d21
, (D.1)

Gj(3)(x) = bd
1
2

32

(
d2

32 + d2
31 + d2

21

)
E(z3, k3) + bd

1
2

32(d32 − d21) F(z3, k3)

+ b
ξ1ξ2d

2
21 + ξ2ξ3d

2
32 + ξ3ξ1d

2
31√

ξ1ξ2ζ3
+ C3

with z3 =
√

ζ3

d31
=
√

x3 − x

d32
, k3 =

√
d31

d32
, (D.2)

and we have used the abbreviations
2

b
= a

3
2 d2

21d
2
31d

2
32, dij = xi − xj ,

27 The third obvious one related to x1 could be obtained as the last cyclic permutation of the indices of xi.
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also with F(z, k) and E(z, k) being the incomplete elliptic integrals of the first and second
kind respectively28. The two different forms are useful for series expansion as x→x2 from
the right and x→x3 from the left, with the advantage of ξ1, ξ2, ζ3 being always positive. In
the case of the gauge (11b) we also have additional relations:

2mA = a, x1 + x2 + x3 = −1

a
, x1x2 + x1x3 + x2x3 = 0, x1x2x3 = 1

a
. (D.3)

Expressions (D.1), (D.2) have a notable property of having no additional constant term (besides
C2,3) in the expansion series near x3 and x2 respectively, i.e. we have

Gj(2)(x) = − 2

a
3
2 d

3
2

21d
3
2

32

√
ξ2

+ C2 +
3(d21 − d32)

a
3
2 d

5
2

21d
5
2

32

√
ξ2 + O

(
ξ

3
2

2

)
,

(D.4)
Gj(3)(x) = 2

a
3
2 d

3
2

32d
3
2

31

√
ζ3

+ C3 +
3(d32 + d31)

a
3
2 d

5
2

32d
5
2

31

√
ζ3 + O

(
ζ

3
2

3

)
,

where C2 and C3 are exactly the same as in (D.1), (D.2).
Sometimes it is also convenient to choose the integration constant so we have Gj(0) = 0:

G̃j(x) = Gj(x) − Gj(0). (D.5)

In general, the choice of this constant is tantamount to the supertranslation by α = C sin �
AK

(see (25)), i.e. to the corresponding redefinition of û. Note that this is still compatible with our
choice of û, namely preserving û = 0 on J + where the black hole reaches it (see figure 4).

Appendix E. Bondi mass change positivity in u → ±0 limit

In order to prove positivity of the first term in the series in u, around u = 0, of the Bondi mass
m(u) for all α ∼ sin � supertranslations, we have to prove that the following quantity,

m2 ≡ − (x1 + x3 − x2)K2

2A2(x3 − x2)(x2 − x1)
−
[

24 − 3K
2
2G

′2

96A2G
+

G′′′xK
2
2

24A2
− C2

2

8A2K
2
2

]
|x=x0

, (E.1)

is positive29 for all x0 in the open interval I ≡ (x2, x3). First, we prove that the function

h = 1

4A2
√

G

[
1

4
K

2
2GG′G′′ − 1

6
K

2
2G

2G′′′ − 1

8
K

2
2G

′3 + G′
]

− C2

4A2K
2
2

is positive for all x0 ∈ I . Realizing that C2 = −G̃j(2)(x0) where G̃j(2) is Gj(2) with
C2 = 0 (D.1), we see that together with (B.2) and (D.4) this gives us the limiting value

h|x=x0=x2 ≡ h(x2) = 0. Now, to prove that h > 0 it is sufficient30 to show that
dh

dx |x=x0

> 0.

But this is obvious, since

dh

dx |x=x0

= 1

A2K
2
2G

3
2

(
1

2
+

1

4
K

2
2GG′′ − 1

8
K2

2 G′2
)2

.

To conclude the proof, we realize that h = G
3
2

dm2

dx
. Since m2(x2) = 0 (see (65)), this means

that m2 > 0 for all x0 ∈ (x2, x3). The proof of the second case for the regular axis segment
x = x3 is completely analogous; the function h is the same, only now h(x3) = 0. Hence
dh

dx |x=x0

> 0 implies h < 0 on I, which together with m3(x3) = 0 again implies m3 > 0 on I.

28 F(z, k) = ∫ z

0
dt√

1−t2
√

1−k2t2
, E(z, k) = ∫ z

0

√
1−k2t2√

1−t2
dt.

29 Being zero at one of the boundary points and, as can also be shown, diverging at the other.
30 In fact, it still suffices if h,x is zero at a finite number of points, as in our case, where this happens at one of the
boundary points.
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