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Self-dual Einstein metrics which admit one (rotational) symmetry vector are determined by solutions
of the sDiff(2) Toda equation, which has also been studied in a variety of other physical contexts. Non-
trivial solutions are difficult to obtain, with considerable effort in that direction recently. Therefore
much effort has been involved with determining solutions with symmetries, and also with a specific
lack of symmetries. The contact symmetries have been known for some time, and form an infinite-
dimensional Lie algebra over the jet bundle of the equation. Generalizations of those symmetries to
include derivatives of arbitrary order are often referred to as higher- or generalized-symmetries. Those
symmetries are described, with the unexpected result that their existence also requires prolongations to
“potentials” for the original dependent variables for the equation: potentials which are generalizations
of those already usually introduced for this equation. Those prolongations are described, and the
prolongations of the commutators for the symmetry generators are created. The generators so created

[ ]

form an infinite-dimensional, Abelian, Lie algebra, defined over these prolongations.

1 The sDiff(2) Toda equation,
and the standard Toda lattice

All self-dual vacuum solutions of the Einstein
field equations that admit (at least) one rota-
tional Killing vector are determined by solu-
tions of the sDiff(2) Toda equation, which
may be written in various equivalent forms:

u’qq + eu,ss =0 p— T’qg + (GTS)’S =0

= vgt(e)s =0, v=rs=us. (1)

How this comes about was shown by
Charles Boyer and myself! in 1982. [In
fact Plebariski and I first wrote the equation
down, for complex-valued, self-dual spaces in
1979.2] Since that time there has been con-
siderable interest in this equation, in general
relativity, and also in some other fields of
physics and mathematics. Nonetheless, most
currently known solutions describe metrics
that also allow a translational Killing vec-
tor. Such solutions do not provide much new,
real understanding of this equation since they
were susceptible to discovery by a much sim-
pler route, as solutions of the 3-dimensional
Laplace equation.

To understand how this process occurs,
we may begin with the standard Plebanski®

formulation for an f-space, a heaven, which
is a 4-dimensional, complex manifold with
a self-dual curvature tensor. He of course
showed that such a space is determined
by a single function of 4 variables, @ =
Q(p,P,q,q), which must satisfy one con-
straining pde, and then determines the met-
ric via its second derivatives, as follows:

g=2(Q,5dpdp+ Q ,5dpdq
+Q g5 dgdp + Q 5dgdq) ,
Q,pﬁQ,qE - Q,pEQ’qﬁ =1. (2)

Restricting attention to those complex spaces
that allow real metrics of Euclidean signa-
ture, there are only two possible “sorts”
of Killing vectors, “translations” and “ro-
tations.” Noting that the covariant deriva-
tive of any Killing tensor must be skew-
symmetric, by virtue of Killing’s equations,
we may make this division more technical
by dividing the class of Killing vectors based
on this skew-symmetric tensor’s anti-self-dual
part, which must be constant. For “trans-
lational” Killing vectors, this anti-self-dual
part vanishes, while it does not for the “rota-
tional” ones. The self-dual case—where the
anti-self-dual part vanishes—has been com-

pletely resolved.*® (In this case the con-
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straining equation for ) reduces simply to the
3-dimensional Laplace equation.)

We continue by insisting that the space
under study admit a rotational Killing vector,
E, we re-define the variables so that they are
adapted to it:

E=i(pd, —pop) =0y,  E(Q) =0,
p=Vre?, p=re . (3)

which changes the constraining equation as
follows, construing €2 to now depend on the
variables {r, ¢, q,q}:

(TQ7T),T-Q,q§ - T Q7qu7§T =1. (4)

It is however often more convenient to rewrite
the constraining equation, and the metric, in
terms of a new set of coordinates, obtained
from the original ones via a Legendre trans-
form based on variables r and s = {2 .. Tak-
ing {s,q,q}, along with ¢, as the new coor-
dinates, and v = Inr as the function of these
coordinates that will generate the metric, we
find the following new presentation, which
show the agreement with the sDiff(2) Toda
equation:

g= Vy+V7(do+w)?,
~ =ds?’+4e'dgNdg, (5)
V=g, w=g{vgdg—vgdi},
and we still require that
Vg +(€"),5s =0, (6)

and j;(duNJ) = —iV3d(2s —1)V).

The name I have used for Eq. (1) was first
used by Mikhail Saveliev,% and also Kanehisa
Takasaki and T. Takebe,” emphasizing their
understanding of its relationship to the alge-
bra of all area-preserving diffeomorphisms of
a 2-surface. Saveliev and Vershik used® this
equation as a non-trivial example of the use of
their development of continuum Lie algebras,
it having the symmetry group which was a
limit of A,, as n went to +o0o. Takasaki and
Takebe created a (double) hierarchy of equa-
tions connected with this equation, analogous

to the hierarchy for the KP equation, which
contained operator realizations of sDiff(2).
The name also emphasized its relationship to
certain limits of the 2-dimensional Toda lat-
tice equations:

a _ _K%ub a __ a b
Uy =€ or vy, =K%e"

a a b

(w*'=K%u’), ab=1,2...,n, (7)

where K%, is the Cartan matrix for the Lie al-
gebra which is also the generator of the sym-
metries of these same Toda equations .

The hoped-for virtue of the relationship
with the Toda lattice lay in the fact that the
Toda lattice equations, when based on any
finite-dimensional, semi-simple algebra, has
symmetries which allow the determination
of Bécklund transformations which generate
We first use
the gauge freedom in the original equations
to divide into two parts the unknown func-
tions v® = a® + b®. Then for the case when
the Lie algebra is sl(n + 1), one finds that
the explicit first-order pde’s for the Backlund
transformation as the following, where the
@ = w*(x,y) are the “other” set of depen-
dent variables, i.e., the “pseudopotentials”
involved in the transformation:

new solutions from old ones.

w

{wa _ aa}’w _ _ew“-i-b” + ew”*l-i-baf1 ,
{w® + b}, = e7w Fa" _emw e gy

The zero-curvature conditions, for the
difference of the two cross-derivatives, then
generate exactly the original Toda equations,
Egs. (7), in the variables v®, as desired, and
expected. Moreover, if one adds the two
cross-derivatives, inserts the form for b9,
from the Toda equations, and changes to
the new, translated pseudopotentials, ¢¢¥ =
wk — whtl 4 b1 4 % then these new de-
pendent variables are also required to satisfy
the Toda equations, although for sl(n), since
there are only n — 1 of them:

- 26” _egafl _ge+l
Y

= (K’nfl)abeeb7
ab=1 ... ,n—1. (9)
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2 The continuous limit of the Toda
lattice equations

Following the straight-forward existence of
both soliton-type solutions and Backlund
transformations of the Toda lattice equa-
tions, we, earlier, studied limits of these equa-
tions to the continuous case, with the intent
of course that these limits would carry over
to the existence of Béacklund transformations
for our equation with three independent vari-
ables. To accomplish the change from dis-
crete indices to functions of a (new) contin-
uous variable, we begin with a new function,
V =V(z,7%,s), that depends on a third con-
tinuous variable, s, which varies, say, from 0
to 3. We then superpose on these values for s
a lattice of n points, a distance ¢ apart, fill in
the space between the lattice points by tak-
ing the limit as n — oo, with § fixed, which
is the same as taking the limit as § — 0, and
following earlier work of Park,’ re-scale the
other continuous variables so that appropri-
ate differences of the exponentials of the v®’s
will create second derivatives with respect to
s:

=0v%(2/4,Z/0) ,
5= 6/(n-1), (10

= V(z,%z,s) = %in}) T (2/6,2/0),

Vi(z,%,8)| S

a=1,...,n,

where the square brackets indicate the inte-
ger part of the quotient within them. This
works well, in fact, although the u®’s need a
scaling of their own, to create their second
derivatives:

U(z,%,9) = 0% {u(2/8,2/6)} . (11)

s=ad
Assuming sufficient continuity of our func-
tions, we may now take limits of the Toda
equations, which give the desired results:

U,zE = €7U’” s sz = —83,6v . (12)

However, when we take the same lim-
its on the prolongation equations themselves,
agreeing to treat the gauged parts, a® and
b®, the same as their sum v®, and also the

pseudopotentials w®, we acquire the following
limiting forms for the “proposed” Béacklund
transformations:

(W —A) . = —d,etWV+E)

(W+B)z=—-0,e” W= (13)

However, the integrability conditions of
these equations are not what was desired:

V= —05eV 0,V = —0%" | (14)
and L .z= —8s{eV85L} . (15)
L=2W+B-A.

The first of these equations is of course
what we expect; but the second is not. This
particular pair of equations is just the system
of equations that LeBrun'® requires to de-
termine his “weak heavens,” which have only
self-dual conformal curvature, and therefore
a possibly non-zero matter tensor. There is
quite a lot of interesting work on the complete
resolution of this pair of equations; perhaps
we ought to look at it as a system and “try
again”? Nonetheless, it certainly does not
create a Bécklund equation for the original
problem.

At this point no progress has been
made toward the advertised goal, namely
a method to “buy” some new solutions to
the original sDiff(2) Toda equation from
old, previously-known ones, or, stated dif-
ferently, how to obtain families of metrics
that are solutions to the stated problem in
general relativity using ones that were al-
ready known. It is also worth noting that
the approach via limits seemed desirable and
interesting because the Estabrook-Wahlquist
method of finding prolongations, pseudopo-
tentials, Bécklund transformations, etc.—
which is our method of choice—has yet to
find a truly effective generalization to prob-
lems with more than two independent vari-
ables. It had indeed been hoped that a so-
lution to this problem would allow an un-
derstanding of the 3-variable problem suffi-
cient to create a good generalization; unfor-
tunately this has not (yet) occurred.
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Before continuing, this is perhaps a good
point to review some of the studies of this
equation that have been made by several
other groups. We have of course already men-
tioned Mikhail Saveliev and A.M. Vershik
and their theory of continuum Lie algebras.®
where the elements in the algebra might be
labelled by continuous variables, as “indices,”
instead of the more usual discrete indices.
Their continuum approach to, say, the Lie
algebra A, would use “test functions” from
some appropriate function space to label the
elements of the algebra instead of discrete la-
bels. The result would then be the following
where Xo(f) are elements of the (Abelian)
Cartan subalgebra, i.e., with grade 0, while
X41(f) are elements of the first and minus-
first grades, often referred to as E; and Fj:

[(Xo(f), Xx1(9)] = :tX:tl((fg)/) )
[(X41(f), X-1(9)] = Xo(f9) -

This approach enabled them to write
down a form for a “general solution” for an

(16)
(17)

initial-value problem for our equation, involv-
ing choices of functions of two variables; un-
fortunately, at least as we see it, this form is
rather too formal, and has not yet been made
practically useful.

From different directions, R.
S. Ward,!'1'12:13 and K. Takasaki’ have cre-
ated objects they refer to as Lax pairs for
this equation, using Poisson brackets instead
of the usual commutators. However, the Lax
pairs involved to not seem to involve pseu-
dopotentials, i.e., realizations of the group of
symmetry involving new dependent variables.
We have therefore been unable to use them to
generate Backlund transformations, although
they surely do generate an infinite hierarchy
of associated equations, in the spirit of the
KP hierarchy.

Although Boyer and myself showed that
the metrics did not admit just two, rota-
tional symmetry vectors, it is certainly true
that there are metrics which admit an entire
sl(2) of such vectors. These have originally

been found by Atiyah,'* originally studying
monopole solutions of the Yang-Mills equa-
tions; this was then elaborated in some de-
tail by Olivier.!®> The advantage of such a
large symmetry group is that the pde’s are
reduced to ordinary differential equations in
just one independent variable. A some-
what different approach, via (3-dimensional)
Einstein-Weyl spaces, has brought Tod,!¢
and co-workers,!”!® to looking at other re-
ductions to simply ordinary differential equa-
Olivier’s equations involve elliptic
functions as solutions, while Tod’s go one
step higher and involve Painlevé transcen-
dents.

Yet another approach is to simply look
for ansétze that give non-trivial results.
Plebaniski and myself already put forward
some very simple ansétze for this equation,
which did indeed demonstrate all possible
heavenly Petrov types; nonetheless, they
were not particularly inspired. In fact inter-
esting ansétze are rather difficult to acquire,
since too much symmetry is easily acquired,

tions.

reducing the problem to one that also con-
tains a self-dual Killing vector. However, one
plausible ansatz is obtained by requiring the
second term in the v-form of the equation to
be independent of s. This imposes the condi-
tion that e’ be a second-order polynomial in
s, and creates a problem that can be resolved
by simply solving some Liouville equations.
This generates the result
€’ = +[s + G(g)lls + H(Q)]ox
_A'a)B' (@)
=—[s+G(9)][s + H(Q)]m
(18)

where « is the general solution of the Liou-
ville equation, and the four functions shown
are arbitrary functions of one variable. It
should of course be pointed out that the equa-
tion has conformal symmetry so that two of
these functions could be absorbed into new
definitions of the original independent vari-
ables. By different methods this solution has
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been published some 3 different times in the
last few years. Calderbank and Tod'® found
it (first) by imposing restrictions on the asso-
ciated Einstein-Weyl spaces. Martina, Shef-
tel and Winternitz2° also found it by asking a
question related to an allusion above, namely
by looking specifically for solutions without
excess invariances.

3 Generalized Symmetries of the
Equation

Eventually, following some helpful comments
by M. Dunajski, we began an alternative at-
tempt to find a method to obtain new so-
lutions, which will indeed be the principal
point of this talk. Unable to find proper
prolongation algebras for the equation, we
changed tactics and looked at the question
of finding the algebra of generalized symme-
tries over the infinite jet over the pde. We
begin our hunt for the generalized symme-
tries, as usual by considering the pde, in
the form with v = wv(q,q,s), as a variety
in the second jet bundle, with coordinates
{q’ Q> 8,7V, Vg, Ug; Us; Ugqs Ugs) Usss Ug,ss v@ﬁ} and
co-coordinate defining the surface, vqg, deter-
mined in terms of the coordinates from the
pde. We then prolong that bundle to the infi-
nite jet, where the co-coordinates are chosen
to be all “derivatives” of v that involve at
least one ¢ and also one @, resolved from the
equations created from all possible deriva-
tives of the original pde. On this infinite jet
we use the usual total derivative operators in
each direction, of the form, for example,

Dy = 04 + v40, + ,gq0v, + 77,7681’; + 0,45 0v,

+0,49q0vqq + V,qq50v,, + VgssOv,.,
+vq5587,55 + vq@&,ﬁ + ... , (19)

where the overbar on the derivative opera-
tor reminds us that this generic operator has
been restricted to live on the variety which
defines the pde. Because of this, we then use
the “over-tilde” to indicate that this coeffi-
cient is to be determined from the constraint

equations defining the co-coordinates. We
may then look for generators, ¢, of symme-
tries involving any (finite) number of deriva-
tives of the original variables, which must
satisfy the standard equation, which we take
from Vinogradov’s approach:2!

{DyDg + ¢"[D,D + 20, D,

+(vss + O2)] }% —0. (20

We were rather perplexed when explicit com-
putations showed that there were no such ob-
jects involving derivatives higher than first
order. (We actually did expect a symme-
try algebra built on sDiff(2).) These first-
order ones were of course just the ordinary
(Lie) symmetries for the equation, published
at various times before:?2

Pov = A(‘]) Vg + A(@) vg + (04 S+ ﬁ)vs
+A,4(q) + A5(@) — 2o, (21)

with the two arbitrary functions of 1 variable,
A(q) and A(g). When ¢ and § are restricted
to be complex conjugates of one another,
originating from the original geometry of a
Euclidean signature metric, then this pair co-
ordinate and define the well-understood con-
formal transformations of that underlying 2-
space. We record here their commutators:

{®a, vt =wp, {pa,pa}=0,

{®as wa} ={pp, va} =0,

{@Bv @A} = {%Oaa QOA} =0, (22)

{Pa,0a,} = Pasa, - 4,4, , 5

{pan 1t =0a,4,.- 4,4, -
The lack of any genuine symmetries at higher
order than the first jet was eventually re-
solved by the introduction of “potentials”
into the jet bundle. This is perhaps not truly
surprising since our original presentation of
our equation gave not only the v-form of the
equation, currently being considered, but also
two forms involving two different potential
functions, r and u, defined such that r ; = v
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and u s = v, believing them to be “equiva-
lent” equations. Indeed, when we prolonged
our jet bundle for v in these “integral di-
rections,” such symmetry generators did in
fact appear.
down generators at the next two levels. How-

We intend now to first write

ever, to simplify the discussion, we note that,
modulo the well-understood conformal trans-
formations depending on arbitrary functions,
the Lie symmetries could be thought of as be-
ing generated by the two transformations in
s and simply by v, and vz. Therefore, when
discussing the generalized ones we will also
think of them modulo those conformal sym-
metries and therefore as generated by two se-
quences of generators, beginning with v, and
vg, respectively, which we will label as (01 and
Q@,. By explicit calculation we found the next
two pairs, and display those three pairs here:

Q1 =vg = (Tq)s = e_v(ev)q )

Ql :U§7

Qs = e "[e"(ugg + (1) )]z -

It is probably important to emphasize
at this point that, for instance, Q1 satisfies
the linearization equation, Eq. (23), just as
it stands. However, Q2 does not, because it
involves a potential for the pde. In principle,
one could imagine two different sorts of gen-
eralizations to that equation which might be
appropriate for Q2. The first option would
say that, since it involves the potential r, we
should just start the problem over again and
look for symmetries of the defining pde for
r, and expect that this is what we should
That
pde suffers exactly the same deficit of gener-

obtain. This is definitely not true.

alized symmetries, in its own right, as did our
original, equivalent equation for v. The sec-

ond option would say that, since this symme-
try generator involves a potential, and a pro-
longation of the jet bundle in that direction,
then we must also prolong the total deriva-
tive operators that appear in Eq. (23). This,
indeed, is the correct choice, if we replace
those total derivative operators, D;, by new
ones, 1ﬁi, prolonged with appropriate addi-
tional terms, then Q)2 will indeed satisfy that
We de-
note these prolonged operators also with a

prolonged version of the equation.

pre-script 1 since there will be more:

lﬁq - ﬁq = Tqar + quarq + quqar + ...

aq

JrﬁgarE + qu‘—;&nﬁ + ..,

1D§ — Dq = r@@T + r@&E + T@arﬁ + ...
+7gg0r, + Tqq@Orpy + -+, (24)
1ﬁ3 _Es = U(?T—&—vg&?—i—vﬁarf—f—

qq

00, + VgqOr,, + - - -

The same sort of thing happens, again,
of course, when we attempt to find the gen-
eralized symmetry, ()3, which involves u in
its definition. We again prolong the underly-
ing jet bundle and also the total derivative,
this time creating the quantities Q.Ei, with
coeflicients that involve the various ¢- and g-
derivatives of u, but no mixed ones, and no s-
derivatives, either, for they are expressible in
terms of the r’s which are already in the pro-
longed bundle. As before Q3 is a symmetry
only for this re-definition of the requirements.

4 Commutators for the Symmetry
Generators

The first pair of generalized symmetries re-
quired a potential at the level of a first “inte-
gral”; the the second pair needed a potential
at the second level of integration. These were
easy because they were already understood.
On the other hand, one needs yet a third level
of integration to acquire another pair of gen-
erators. The question immediately arises as
to how to choose these higher levels of po-

tentials. This question is of course closely
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related to similar questions that occur in the
study of the KP equation, for example, where
the standard (Japanese school) approach in-
volves an infinite hierarchy of dependent vari-
ables all satisfying more- and more-involved
equations as one climbs upward in the hier-
archy. Therefore we used as a guide the hier-
archical approach to this equation taken by
Takasaki and Takebe, for which we now give
a (very) brief description. They created” a
pair of hierarchies that are associated with
the sDi ff(2) Toda equation, which involve 4
infinite sequences of functions dependent on
our 3 independent variables, which we may
label as wu;, v;, u; and v;, as i goes from 0
to +o00. The first pair are involved with the
quantities that will create symmetries in the
q variables, while the second pair are involved
with symmetries in the § variables. They are
then inserted as coefficients into two series
in powers of a “spectral” variable, A\, which
act as generating functions for the entire se-
quence of pde’s, written in a Poisson-bracket
format, as follows, where we write only the
ones for the ¢ variables, with the g ones be-
ing completely analogous:

L=X+ug+u A P+ ud2+usA 2+ ...

=\+ Zui)\_i , Ug =Tq = Ugs (25)
0

M=qLl+s+ Y v, L7" (26)
1

= gA\+s+quo+ (qui +v)AN 4 L

These series must satisfy the following
Poisson brackets (analogous to commutator
brackets), which generate infinite sequences
of relationships, equating powers of A:

{B,»C} = »C,q ) {B\,E} = ﬁ@ ’
LM}y =L,
{B7M} = M’q —

(27)

L—)\= Z{—UM + A, LT, (28)
1

{g,M} =Mz =

—B=> {+vng+Bu. L. (29)
1

The quantities B and B are the following
short, finite series, while the Poisson bracket
is in the variables s and the logarithm of the
spectral variable, p = In \:

e’U

[3\: 7 B
{A,B} = /\A,AB,S — )\B7,\A,s .

B:A+U0, (30)

Comparing powers of A\ gives several infinite
sequences of pde’s, involving the wu;’s, the
vp’s, up = rq and v. As expected the ear-
liest members of these sequences repeat the
original pde’s, while we acquire more identifi-
cations, such as u; = uqq and v; = u,. More
specifically, they give the s- and g-derivatives
of the u;’s in terms of derivatives of lower-
order wuy’s, and the s- and g¢-derivatives of
the v,,’s in terms of the u;’s and lower-order
vy’s. These can be arranged to determine a
hierarchy of equations.

Since all the higher-numbered quantities
in these hierarchies are essentially potentials
for the lower ones, there were not unique
choices for the desired extension. It turned
out that Takasaki’s quantities v; seem to be a
very good choice, however. We therefore have
taken a renormalization of them for an infi-
nite sequence of potentials in the g-direction,
and a similar choice involving the v ’s for po-
tentials in the g-direction. There does not
seem to be a single choice appropriate to both
directions at once, as there was in the begin-
ning when we were using r and u. However,
this does not increase, noticeably, the total
size of the prolonged jet bundle. The rea-
son for this is that while, for instance, for
u as a potential, we had to also append all
its g-derivatives and all its g-derivatives (but
not the mixed ones, nor the ones involving
s-derivatives), for these new objects we need
only one set, and not the others. More par-
ticularly, since v; may be identified with ug,
we really begin with vy. Labelling the ele-
ments of this sequence of potentials by z;,
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and the corresponding g-type potentials by
15, we have the following:

_ 1(, )2
Ty = U => {xQ’S B taq 21)(rq) " (31)
T2gq = —Tq€".
A = ugg+ 3(r9)?,
Yo = %Ug = {yz,s B a9 21,( 7) (32)
Y2.q = —Trge€ .

As can be seen we already know both the
s-derivatives and the g-derivatives of xs,
so that only the infinite sequence of g-
derivatives, and the g-derivatives of y5, must
be appended to the list of coordinates for the
prolonged infinite jet bundle.

We now note a few more of the g-forms
of these potentials, and then explain reasons
why they are good choices:

T3 : {517378 = 24+ TqlUgq + é(uq)g ' (33)
T3g= —[ugq+ (rg)*]e”,
Ty,s = miy,q + Tq$27({ + U/Zq(’l"q)Q
T4 : +5 (ugq)® + ()", (34)
Tag= —[T2q+2rquqq + (Tq)g] e’ .

Now, of course, after having added appropri-
ate dimensions to the jet bundle as already
discussed, and after having additional appro-
priate terms to the yet-again-prolonged total
derivative operators, these potentials must
be suitable to generate additional generalized
symmetries for our equation: indeed we may
write them in terms of these quantities, one
new generator for each new potential:

Qs = e "{e"[maq + 2rqugq + (r4)*]}q . (35)
Q= e "{"[yag + 2rgugg + (r7)°]}7 , (36)
Qs = e "{e"[ws,q + 2rg T g + (ugg)®

_|_
+

+3 uqq(rq)z + (Tq)4]}q , (37)
Qs = e {e’[xa,qg+ 274234
+(2ugq + 37"3)3:2,(1 + 3(uqgq)*rq
+4uqq(rq)3 + (Tq)5]}q - (38)

Each of these satisfies the appropriate prolon-
gation of the Vinogradov equation for sym-
metry generators. They have quite interest-
ing structure, and we presume that a recur-
sion process may be defined for them, al-
though this has not yet been found. On the

other hand, they do have several other rather
unexpected properties. Each of the general-
ized symmetry generators can be written as a
perfect s-derivative; moreover, each of them
may also be written in two different ways in
terms of second derivatives of the correspond-
ingly numbered new potential:

—e™" DyDgx; = Q; = D{Di(x))} 5 (39)

Therefore, we may write, for each j, the cor-
responding “linear” pde:

Tjqg + € Tjss - (40)

That the symmetry generators may be writ-
ten in terms of second derivatives of poten-
tials is, after the fact, not too surprising, for
reasons which will be explained shortly. On
the other hand, that each of those potentials
satisfies this linear equation similar to the Le-
Brun monopole equation was certainly unex-
pected. (The statement that it is linear is
of course slightly misleading insofar as the
g;’s are potentials for the unknown function
v that also appears within the equation.)

A last comment relevant to the choice
of potentials for this problem returns to
Takasaki’s approach to the hierarchy of de-
pendent functions and corresponding pde’s
that they satisfy. In this hierarchical ap-
proach it is usual to also introduce an addi-
tional infinite sequence, of independent vari-
ables, on which the various functions may
depend. As the equations in the hierarchy
may be satisfied simultaneously they consti-
tute distinct, commuting flows over the solu-
tion manifold, so that these new independent
variables may be thought of as the flow pa-
rameters along the curves described by the
Takasaki and Takebe refer to these
additional independent variables by ¢,, and

flows.

o, for m = 1..00, and give generalizations of
the Poisson-bracket equations above that ap-
ply to them. It is then also common in such
descriptions to determine a 7-function that
depends on the entire infinite set of indepen-
dent variables, and allows one to determine
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all the other dependent variables from that.
In their description, the various derivatives of
the logarithm of that 7-function, with respect
to the variables ¢; and g; are just these quan-
tities v; and 0;; i.e., 9(log7)/0,, o v; X x;,
making it seem rather more reasonable that
these functions would indeed to “potentials”
to describe the desired properties of the solu-
tion space.

To return to the symmetries now, and
consider why it is not too surprising that
these expressions may be written as perfect s-
derivatives, we must first re-visit the notion
that they are generators for symmetries. If
the symmetries were written in terms of their
associated vector fields, over the jet bundle,
then we would expect to consider the stan-
dard commutators, i.e., Lie brackets, of two
of them, and insist that they close onto them-
selves. Since we are describing the symme-
tries in terms of their generators, instead of
their vector fields, there must be an asso-
ciated mapping of the generators that ac-
complishes the same thing, i.e., a realiza-
tion of the Lie bracket in the underlying, ab-
stract algebra. Our approach to this realiza-
tion is via the universal linearization opera-
tor, which was also used to create the (Vino-
gradov) equation that must be satisfied by a
symmetry generator. We define a linear op-
erator for functions on the infinite jet bundle
and then restrict it to the variety defined by
some system of pde’s, F, which are resolved
by some system of functions u” = u”(z%):

3, = {¢>”auu + {Da(6")}0us
+{DuDp(¢")}0ur, + .. }

(o0)
=Y {D@)}ou, . ()
o=0

where the sum is over all “multi-indices.”
The Vinogradov equation, which determines
a system defining a symmetry ¢” of F, is
simply that 34(F) = 0.
two such solutions, i.e., two such symmetries,

In general, given

then they determine a third solution, possi-

bly just 0, that we refer to as the commutator
of the two solutions because the vector field
that it generates is the vector field commuta-
tor of the two vector fields generated by the
initial pair of symmetries. This commutator
is specified by a Poisson-bracket sort of re-
lationship: given two symmetry generators,
¢ and v, then the one they determine is 7,
given by

N ={o, P} = 3s(¥") = By(¢") . (42)

For symmetry generators on the va-
riety over our jet bundle defined by the
pde and all its derivatives, the coordi-
nates in use are the sets {v,vq,vqq; .-},
{vg:vgg,- -}y {Vs)Vsss---}, {vsq,...}, and
{vsg,...}. Therefore, for a function, say @,
defined over this variety, we can say that a

more explicit form for the 3 operator will be

30 = {Q0, + (D)., + (D;(@)}a,,
+ ...
+{Dg(Q)}0o- + (DA(Q)}D + ..

q

+{D,(Q)}0,, + {DsDy(Q)}0,,
+H{DD3(Q)}0,,. + {D2(Q)}0%.,
+... } . (43)

However, for our situation there are not very
many interesting places to apply this since
we have only just Q; and @, as symmetry
generators defined on the variety over the
original jet bundle. All the other symmetry
generators require this potentialization of the
bundle, described above. As already noted,
this potentialization requires a prolongation
of the total derivative operator. However, it
also requires a prolongation of the lineariza-
tion operator, since the functions involved are
now defined over a rather larger space.

A convenient approach to determine how
this should be done is accomplished by first
retreating somewhat, and “deriving” the ex-
pression involving the linearization operator,
using the Frechét (or Gateaux) derivative on
function spaces. If ¢ is a function over some
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space of functions, and ¢ and v are func-
tions in that space, then we may of course
talk about o(¢) or o(¢ + ep). The Frechét
derivative, of ¢ in the direction 1) is then the
function on the function space, ¢’[+)], which
is that part of o(¢ + et) that is linear in e,
divided by e: o(¢+ ey)) = () + e’ [V](¢) +
O(€?). Applying this now to functions over
our infinite jet, we usually think of ¢ as de-
pending on every one of the coordinates on
the jet, {2, v, Vg, Vab, Vabe,
we imagine translating v by some very small

... }. Now, when

amount, in some direction, say by e, deter-
mined by 9, some other function on the jet,
we need to have a method to determine how
this translation affects each of the other jet
coordinates. To do this we consider an opera-
tor that “creates” the appropriate jet variable
from ¢, such as qup = DyaD,vq, and then let
that operate on the translated version of g:

) —

J(q, qasY4ab; abey - - -
o(q+ e, qo + €D, qap + €Dy Dy,
Qabe + €Da DyDotp, ... )

=0(¢,qa,---) + 6{(¢) o4+ (ﬁﬂ#) O0qa
+(DaDt) 0gy + - b + O()

= o(g...)+e3y(0)+... , (44)

where the last equality follows from the def-
inition of the linearization operator given
above. This allows us to see that the Frechét
derivative, of a function over a function space,
is the complete analogue of the lineariza-
tion operator acting on functions over a jet
bundle. However, our “philosophical” under-
standing of the one concept can assist us in
determining the correct prolongation of the
other. This is especially because our intro-
duction of various potentials into the larger
jet bundle requires us to now consider func-
tions that also depend on some of these “in-
tegrals” of jet coordinates. The simplest case
is just the one where our function, like the
symmetry generator ()2, depends on the first
integral, r, of the original dependent variable

v, i.e., v = Dy(r), or r = 55_1(0). There-

fore the prolongation of the linearization op-
erator Sw, which we would denote by 3¢,
should have an extra term {D,  1}8,. How-
ever, the existence of this new coordinate, v,
also generates its ordinary derivatives as well;
therefore, we also need new coordinates on
the jet of the form Dgyr, Dyqr, etc., while D,r
would simply be v, and therefore not gener-
ate any new jet coordinate. The prolonga-
tion 3 may then be expressed in the following
way, where we use (2 as a reasonable exam-
ple function for it, and we use the pre-script 1
to indicate that this is simply the first of sev-
eral prolongations that we will have to make:

130, = 3. + {D,'Qa} 0,
+{DyDs ' Qa} 0, + {D.Dy ' @2} 0r,,
+ ...
+{DgD, ' Q2} 0 + (DD, Qu} O,
S (45)

Going on toward the symmetry @3, we
have introduced yet a new potential, u =

5372(0), and, as discussed earlier, all of its

unmixed ¢- and g-derivatives. We may then
use the same approach as above for the next
prolongation of the linearization operator:

23(93 = 1§Q3 + {5572623}811
+{D Dy "Q3} 0, + {D.Dy "Q3} .,
+ ...
— — —2 —2—= -2
+{D§Ds Q3}8u5+{Dqu QS}aﬁ
oL (46)

Proceeding onward with the strings of poten-
tials that we need, from Section III, the next
one is considerably more complicated, being
nonlinear: xy = ﬁs_l(uqq + 1(rg)?). This
time the explicit operator that acts on v to
create x5 is nonlinear. Nonetheless, we create
it, replace v by v+¢eW, and then find the first-
term in € in this process; i.e., we linearize it

by finding the first functional derivative:

1 (. _o__ 1 2
w2 =D, {D,"Dyv+1[D, 'Dyo| }

PlebTalkLatex: submitted to World Scientific on January 16, 2009 10



For Publisher's use

[ ]

= 25(v) (47)

= z2(v+ ep) — x2(v)

_ e{m‘%jw +D, [r,j;lﬁqu;} }
+0(&)

= €X2(¢) + 0(62) .

We also recall that this potential only
needs us to introduce the set of all of its
g-derivatives, as additional jet variables, all
other “derivatives” already being functions of
coordinates on the bundle. However, as com-
pensation for this, at this level, we also need
to introduce the potential yo = Es_l(u@ +
1(r7)?), and all of its g-derivatives.

2
At the next level, we proceed similarly:

(48)

w3 =D, {D, "Dy +2D, 'Dyv)
(D, "' D2 v) + (Dyv)[Dy "Dl
+(D," "Dy v} = wa(v),
= z3(v+ep) — x3(v)
— D, *{D, "Dy +2r,D, "Dyu

(49)

+2rgy Dy Db
+vy[ DDy + 20, D, "Dyt
+(ugq + (1))Dg| } + O()
= eX3(¢) + O(€?) .

For the analogous operations based on the y;
variables, and relevant to the @j symmetry

(50)

generators, using g-derivatives, we will use
the notation Y}, analogous to the X; oper-

ators above. Then we may explicitly write

down the form of the further prolongations
of the linearization operator:

33y = 230 + Xa ()0, + (D X (1)},
DX ()}as,, + -
+Y2(4)y, + {DgY2(1)}0y, .
HD Yo ()}0y, oy + - . (5D)
3y =330 + Xa ()0, + Dy Xs(1)}0,,
DX ()} g,y + -
+Y3(1)0y, + {DgVs(¥)}0y,

DY ()} 0y, + ..

Having now prolonged the linearization

. (52)

operator to include these new, nonlinear po-
tentials as well, the calculation of a commu-
tator of two symmetries requires that both
of those symmetries admit these various in-
tegrals themselves: a first, and a second, inte-
gral, with respect to s, and then accept rather
more complicated things in the cases for zo
and x3. This is surely not the case for ev-
ery function on the jet bundle; however, we
are really only interested in applying them
to the various symmetry generators, such as
Q; and @j. This of course now, finally, tells
us why we should have not have been sur-
prised to learn that each of the symmetry
generators could be conceived of as a per-
fect s-derivative, and even a perfect second
s-derivative. Since this is true, let us use the
symbol 7; for the first s-integrals of the sym-
metry generators, x;, and we can write out
some preliminary general cases of the action
of the higher-level operators on the symmetry
generators, and also some examples:

Q; =Ds(n;) = Da(x;), (53)

Xo(Q)) = D {zjgq + ralig} - (54)
X3(Q;) = bs_Q{quq +2(qNj.q)q
+0g(25,qq + 2rgNj,q)

+(ttgq + (r)))Qsa } 3 (55)

)

X2(Q1) =724,

X2(Q2) = w34 — %(qu)Q )
X2(Q3) = T4,q — Uqgql2,q 5 -++ > (56)
Xg(Ql) :l’37q g e (57)

This structure is important in under-
standing that everything displayed is actu-
ally what was wanted, namely generalized
symmetries. In addition, we have succeeded
in understanding how to “drag along” the
prolongations of various important operators
when we prolong the standard infinite jet

bundle. Nonetheless, there are two rather
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distressing difficulties with it. All the dis-
played symmetries are part of a commut-
ing hierarchy; i.e., they commute as vector
fields, so that all the commutators are in fact
zero. This structure then asserts that it has
been created correctly, but it does not help
you in finding more details, since it contains
no recursion operators. One must retreat to
the generating equations again, presumably,
to determine algorithms that concisely show
what the form of the n-th symmetry genera-
tor is. Or, there may be some other approach
to finding details of recursion operators.

A second, current difficulty is that the
intended purpose of calculating the symme-
try generators is to use them as a tool, or
guide, to methods to reduce the difficulty of
determining solutions of the original pde. For
example, taking the first pair of symmetry
generators, vq and vg, we may use the vanish-
ing of one of them alone, or a linear relation
between them to lower the dimension of the
searched-for solution space. [Any of those re-
quirements are equivalent, under the confor-
mal symmetries of the equation.] One then
hopes that similar use of the generalized sym-
metries would also help solve the original pde.
So far, we have been unable to find anything
new there. It is true that one can locate,
again, the solution of the form of a quadratic
polynomial in s for e¥, but this is not par-
ticularly exciting. Lastly, in the study of the
KP hierarchy there are methods to determine
solutions that originate in nice behavior of
the 7-function. When looked at fairly care-
fully none of those methods for the Toda lat-
tice equations have reasonable limits for this
problem. As well, Takasaki’s 7-function ap-
pears to be simply our potential function, u,
which satisfies an equation equivalent to the
original pde, which also does not help.
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