
KILLING-VECTOR REDUCTIONS FOR COMPLEX-VALUED,
TWISTING, TYPE-N VACUUM SOLUTIONS

DANIEL FINLEY

Department of Physics, University of New Mexico, Albuquerque, 87131 USA
E-mail: finley@tagore.phys.unm.edu

1 Simpler Description of the Local Metric

The goal of understanding general classes of solutions of Petrov Type N, with
non-zero twist, is one that is still not realized. The use of hh-spaces to forge a
different path toward this goal was developed to a reasonable form in 1992.1 This
work pushes that path a step further, in a direction that has interested the more
standard analysis for some time: to look for solutions that admit one Killing and
also one homothetic vector, to simplify the task.2

A general hh-space is a complex-valued solution of the Einstein vacuum field
equations that admits (at least) one congruence of null strings, i.e., a foliation by
completely null, totally geodesic two-dimensional surfaces.3 Those solutions with
algebraically-degenerate, real Petrov type have two distinct such congruences. To
describe them we use coordinates {p, v, y, u}, where p is an affine, null coordinate
along one null string, v specifies local wave surfaces, and y and u are transverse
coordinates, in those surfaces. The metric is determined by x and λ, functions of
{v, y, u}, which must satisfy three quasilinear pde’s, involving two gauge functions,

∆ = ∆(x, y) such that ∆1 6= 0 = ∆3 , γ = γ(v, u) such that γ1 6= 0 = γ2 . (1)

The equations may be most easily presented by first introducing a non-holonomic
basis for the derivatives in these three variables:

∂1 ≡ ∂v , ∂2 ≡ ∂y , ∂3 ≡ ∂u + a∂v, with a ≡ −xu/xv , (2)

where ∂3 is actually the derivative with respect to u holding the function x =
x(v, y, u) constant, instead of v, which is then construed as v = v(x, y, u). (Some-
times F = F (x, y, u) ≡ vx λ[v(x, y, u), y, u] is also useful.) The twist of the solution
is then proportional to a2. The constraining pde’s then have the following form:

λ22 = ∆λ , λ33 + 2a1λ3 + a31λ = γλ ,

a2(λ23 + λ32) + a22λ3 + a32λ2 + 1
2a322λ = 0 .

(3)

The only known non-trivial solution is that due to Hauser4

a = y + u , ∆ = 3/(8x) , γ = 3/(8v) , x + v = 1
2 (y + u)2 ,

λ = (y + u)3/2f(t) , it + 1 ≡ 4v/(y + u)2 , f a hypergeometric function.
(4)

A null tetrad can be given in terms of these quantities, and the associated non-zero
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components of the curvature:

g = ω∼
1 ⊗ ω∼

2 + ω∼
2 ⊗ ω∼

1 + ω∼
3 ⊗ ω∼

4 + ω∼
4 ⊗ ω∼

3 , with ω∼
1 ≡ p du ,

ω∼
2 ≡ Z dy + a1 ω∼

3 , ω∼
3 ≡ dv − a du , ω∼

4 ≡ dp + E du−Qω∼
3 ,

where E ≡ λ(λa32 + 2λ3 a2) , Z ≡ p/λ2 + a2 , Q ≡ p/λ2 + λ2(λ2/λ)3 ,

and 2R1313 = 2γ1/p = C(1) , 2R2323 = 2(λ2/Z)∆1 = C
(1)

.

(5)

These constraining pde’s are unchanged under any one of the following coordi-
nate transformations.1 In each of them the function denoted by a capital letter is
arbitrary but invertible:

Transf. I: {v, y, u} → {v, y, u}, with v = V (v, u), and F , x, γ, ∆ as scalars;

Transf. II: {x, y, u} → {x, y, u}, with x = X(x, y), and λ, v, γ, ∆ as scalars;

Transf. III: {v, y, u} → {v, y, u}, with y = Y (y), and x, γ as scalars, while λ
scales as λ =

√
Yy λ, and ∆ has an additional term: ∆ = ∆ + {1/

√
Yy},yy .

Transf. IV: {v, y, u} → {v, y, u}, with u = U(u), and x, ∆ as scalars, while λ
scales as λ =

√
Uu λ, and γ has an additional term: γ = γ + {1/

√
Uu},uu .

We refer to γ = γ(u, v) and ∆ = ∆(x, y) as gauge functions since transformations I
and II would allow them to be replaced by v and x, respectively. However, we will
save that freedom for now.

2 Killing’s Equations

We reduce the generality of the pde’s by insisting that the metric allow some sym-
metries. An arbitrary homothetic vector, Ṽ , constrains the metric and curvature:

L
Ṽ

gαβ ≡ V(α;β) = 2χ0 gαβ , L
Ṽ

Γ∼
α

β = 0 = L
Ṽ

Ω∼
α

β . (6)

When put together with the pde’s for the metric functions, Eqs.(3), these require
any prospective homothetic vector to be determined by two functions, K = K(u)
and B = B(v, u), as follows:

Ṽ = +(2χ0 −B,v)p∂p +
(∂u + a∂v − a,v)(B − aK)

a,y
∂y + K∂u + B∂v , (7)

along with various constraints on λ, a, ∆, and γ, relative to K and B. We may
however use our coordinate freedom(s) to simplify those equations.

Under Transformation I, v = V (v, u) =⇒ K = K , B = KV ,u + BV ,v ;

under Transformation IV, u = U(u) =⇒ K = U ,u K , B = B .
(8)

Therefore we may always choose coordinates so that B = 0 and K is a constant,
say +1, and then ask for the constraints on {λ, a, ∆, γ}. We now do this for one
true Killing vector, which takes the form ∂u− ∂y, and gives us the (known) result1

that a and λ must depend only on v and s ≡ y + u, while γ = γ(v) and ∆ = ∆(x).
(This is the usual transverse Killing vector allowed in this problem.)
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A second (homothetic) symmetry vector, H̃, will have the generic form given in
Eq.(7), with its own functions B and K, constrained by the fact that the commu-
tator of two homothetic vectors is a Killing vector,5 which requires that

∂uB = 0 = ∂2
uK . (9)

By using the translation and scaling freedom for v and u still remaining in trans-
formations IV and I, we acquire the following form for our homothetic vector:

H̃ = (2χ0 − µ0)p∂p + s∂s + µ0v∂v , s ≡ y + u , (10)

and “scaling” equations for each of our dependent variables:

H̃(a) = (µ0 − 1) a , H̃(λ) = (χ0 + 1− µ0)λ ;

H̃(γ) = −2 γ , H̃(∆) = −2 ∆ .
(11)

These allow all the original constraint equations, Eqs.(3), to be rewritten in terms
of functions of a single variable, t ≡ v/sµ0 . Calculations for an optimal presentation
for those equations are not yet fully completed, and will be presented elsewhere.
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