KILLING-VECTOR REDUCTIONS FOR COMPLEX-VALUED, TWISTING, TYPE-N VACUUM SOLUTIONS

DANIEL FINLEY
Department of Physics, University of New Mexico, Albuquerque, 87131 USA
E-mail: finley@tagore.phys.unm.edu

1 Simpler Description of the Local Metric

The goal of understanding general classes of solutions of Petrov Type N, with non-zero twist, is one that is still not realized. The use of $\mathfrak{h} \mathfrak{h}$-spaces to forge a different path toward this goal was developed to a reasonable form in 1992. ${ }^{1}$ This work pushes that path a step further, in a direction that has interested the more standard analysis for some time: to look for solutions that admit one Killing and also one homothetic vector, to simplify the task. ${ }^{2}$

A general $\mathfrak{h} \mathfrak{h}$-space is a complex-valued solution of the Einstein vacuum field equations that admits (at least) one congruence of null strings, i.e., a foliation by completely null, totally geodesic two-dimensional surfaces. ${ }^{3}$ Those solutions with algebraically-degenerate, real Petrov type have two distinct such congruences. To describe them we use coordinates $\{p, v, y, u\}$, where p is an affine, null coordinate along one null string, v specifies local wave surfaces, and y and u are transverse coordinates, in those surfaces. The metric is determined by x and λ, functions of $\{v, y, u\}$, which must satisfy three quasilinear pde's, involving two gauge functions,

$$
\begin{equation*}
\Delta=\Delta(x, y) \text { such that } \Delta_{1} \neq 0=\Delta_{3}, \quad \gamma=\gamma(v, u) \text { such that } \gamma_{1} \neq 0=\gamma_{2} \tag{1}
\end{equation*}
$$

The equations may be most easily presented by first introducing a non-holonomic basis for the derivatives in these three variables:

$$
\begin{equation*}
\partial_{1} \equiv \partial_{v}, \quad \partial_{2} \equiv \partial_{y}, \quad \partial_{3} \equiv \partial_{u}+a \partial_{v}, \quad \text { with } a \equiv-x_{u} / x_{v} \tag{2}
\end{equation*}
$$

where ∂_{3} is actually the derivative with respect to u holding the function $x=$ $x(v, y, u)$ constant, instead of v, which is then construed as $v=v(x, y, u)$. (Sometimes $F=F(x, y, u) \equiv v_{x} \lambda[v(x, y, u), y, u]$ is also useful.) The twist of the solution is then proportional to a_{2}. The constraining pde's then have the following form:

$$
\begin{align*}
& \lambda_{22}=\Delta \lambda, \quad \lambda_{33}+2 a_{1} \lambda_{3}+a_{31} \lambda=\gamma \lambda \\
& a_{2}\left(\lambda_{23}+\lambda_{32}\right)+a_{22} \lambda_{3}+a_{32} \lambda_{2}+\frac{1}{2} a_{322} \lambda=0 . \tag{3}
\end{align*}
$$

The only known non-trivial solution is that due to Hauser ${ }^{4}$

$$
\begin{gather*}
a=y+u, \quad \Delta=3 /(8 x), \quad \gamma=3 /(8 v), \quad x+v=\frac{1}{2}(y+u)^{2} \\
\lambda=(y+u)^{3 / 2} f(t), \quad \text { it }+1 \equiv 4 v /(y+u)^{2}, \quad f \text { a hypergeometric function. } \tag{4}
\end{gather*}
$$

A null tetrad can be given in terms of these quantities, and the associated non-zero
components of the curvature:

$$
\begin{gather*}
\mathbf{g}={\underset{\sim}{\omega}}^{1} \otimes{\underset{\sim}{\omega}}^{2}+{\underset{\sim}{\omega}}^{2} \otimes{\underset{\sim}{\omega}}^{1}+{\underset{\sim}{\omega}}^{3} \otimes \stackrel{\omega}{\omega}^{4}+{\underset{\sim}{\omega}}^{4} \otimes{\underset{\sim}{\omega}}^{3}, \quad \text { with }{\underset{\sim}{\omega}}^{1} \equiv p d u, \\
{\underset{\sim}{\omega}}^{2} \equiv Z d y+{\underset{\sim}{\omega}}^{3} \equiv d v-a d u,{\underset{\sim}{\omega}}^{4} \equiv d p+E d u-Q{\underset{\sim}{\omega}}^{3}, \\
\text { where } E \equiv \lambda\left(\lambda a_{32}+2 \lambda_{3} a_{2}\right), Z \equiv p / \lambda^{2}+a_{2}, Q \equiv p / \lambda^{2}+\lambda^{2}\left(\lambda_{2} / \lambda\right)_{3}, \tag{5}\\
\text { and } 2 R_{1313}=2 \gamma_{1} / p=C^{(1)}, \quad 2 R_{2323}=2\left(\lambda^{2} / Z\right) \Delta_{1}=\bar{C}^{(1)} .
\end{gather*}
$$

These constraining pde's are unchanged under any one of the following coordinate transformations. ${ }^{1}$ In each of them the function denoted by a capital letter is arbitrary but invertible:

Transf. I: $\{v, y, u\} \rightarrow\{\bar{v}, y, u\}$, with $\bar{v}=\bar{V}(v, u)$, and F, x, γ, Δ as scalars;
Transf. II: $\{x, y, u\} \rightarrow\{\bar{x}, y, u\}$, with $\bar{x}=\bar{X}(x, y)$, and $\lambda, v, \gamma, \Delta$ as scalars;
Transf. III: $\{v, y, u\} \rightarrow\{v, \bar{y}, u\}$, with $y=Y(\bar{y})$, and x, γ as scalars, while λ scales as $\lambda=\sqrt{Y_{\bar{y}}} \bar{\lambda}$, and Δ has an additional term: $\Delta=\bar{\Delta}+\left\{1 / \sqrt{Y_{\bar{y}}}\right\}_{, y y}$.

Transf. IV: $\{v, y, u\} \rightarrow\{v, y, \bar{u}\}$, with $u=U(\bar{u})$, and x, Δ as scalars, while λ scales as $\lambda=\sqrt{U_{\bar{u}}} \bar{\lambda}$, and γ has an additional term: $\gamma=\bar{\gamma}+\left\{1 / \sqrt{U_{\bar{u}}}\right\}, u u$.
We refer to $\gamma=\gamma(u, v)$ and $\Delta=\Delta(x, y)$ as gauge functions since transformations I and II would allow them to be replaced by v and x, respectively. However, we will save that freedom for now.

2 Killing's Equations

We reduce the generality of the pde's by insisting that the metric allow some symmetries. An arbitrary homothetic vector, \widetilde{V}, constrains the metric and curvature:

$$
\begin{equation*}
\mathcal{L}_{\tilde{V}} g_{\alpha \beta} \equiv V_{(\alpha ; \beta)}=2 \chi_{0} g_{\alpha \beta}, \quad \mathcal{L}_{\tilde{V}} \Gamma_{\sim}^{\alpha}{ }_{\beta}=0=\mathcal{L}_{\tilde{V}} \Omega^{\alpha}{ }_{\beta} \tag{6}
\end{equation*}
$$

When put together with the pde's for the metric functions, Eqs.(3), these require any prospective homothetic vector to be determined by two functions, $K=K(u)$ and $B=B(v, u)$, as follows:

$$
\begin{equation*}
\widetilde{V}=+\left(2 \chi_{0}-B_{, v}\right) p \partial_{p}+\frac{\left(\partial_{u}+a \partial_{v}-a_{, v}\right)(B-a K)}{a_{, y}} \partial_{y}+K \partial_{u}+B \partial_{v} \tag{7}
\end{equation*}
$$

along with various constraints on λ, a, Δ, and γ, relative to K and B. We may however use our coordinate freedom(s) to simplify those equations.

$$
\begin{align*}
\text { Under Transformation I, } \quad \bar{v}=\bar{V}(v, u) & \Longrightarrow \bar{K}=K, \quad \bar{B}=K \bar{V}_{, u}+B \bar{V}_{, v} ; \\
\text { under Transformation IV, } \quad \bar{u}=\bar{U}(u) & \Longrightarrow \bar{K}=\bar{U}_{, u} K, \quad \bar{B}=B \tag{8}
\end{align*}
$$

Therefore we may always choose coordinates so that $B=0$ and K is a constant, say +1 , and then ask for the constraints on $\{\lambda, a, \Delta, \gamma\}$. We now do this for one true Killing vector, which takes the form $\partial_{u}-\partial_{y}$, and gives us the (known) result ${ }^{1}$ that a and λ must depend only on v and $s \equiv y+u$, while $\gamma=\gamma(v)$ and $\Delta=\Delta(x)$. (This is the usual transverse Killing vector allowed in this problem.)

A second (homothetic) symmetry vector, \widetilde{H}, will have the generic form given in Eq.(7), with its own functions B and K, constrained by the fact that the commutator of two homothetic vectors is a Killing vector, ${ }^{5}$ which requires that

$$
\begin{equation*}
\partial_{u} B=0=\partial_{u}^{2} K \tag{9}
\end{equation*}
$$

By using the translation and scaling freedom for v and u still remaining in transformations IV and I, we acquire the following form for our homothetic vector:

$$
\begin{equation*}
\widetilde{H}=\left(2 \chi_{0}-\mu_{0}\right) p \partial_{p}+s \partial_{s}+\mu_{0} v \partial_{v}, \quad s \equiv y+u \tag{10}
\end{equation*}
$$

and "scaling" equations for each of our dependent variables:

$$
\begin{align*}
\widetilde{H}(a)=\left(\mu_{0}-1\right) a, & \widetilde{H}(\lambda)=\left(\chi_{0}+1-\mu_{0}\right) \lambda ; \\
\widetilde{H}(\gamma)=-2 \gamma, & \widetilde{H}(\Delta)=-2 \Delta . \tag{11}
\end{align*}
$$

These allow all the original constraint equations, Eqs.(3), to be rewritten in terms of functions of a single variable, $t \equiv v / s^{\mu_{0}}$. Calculations for an optimal presentation for those equations are not yet fully completed, and will be presented elsewhere.

References

1. J.D. Finley, III and J.F. Plebański, J. Geom. Phys. 8, 173 (1992).
2. Other research in this area includes C.B.G. McIntosh, Cl. Qu. Grav. 2, 87 (1985), H. Stephani and E. Herlt, Cl. Qu. Grav. 2, L63 (1985), F.J. Chinea, Cl. Qu. Grav. 15, 367 (1998), and J.D. Finley, III, J.F. Plebański and Maciej Przanowski, Cl. Qu. Grav. 11, 157 (1994).
3. J.F. Plebański and I. Robinson, Phys. Rev. Lett. 37, 493 (1976), and C.P. Boyer, J.D. Finley, III and J.F. Plebański, in General Relativity and Gravitation, Vol. 2, ed. A. Held (Plenum, New York, 1980).
4. I. Hauser, J. Math. Phys. 9, 357 (1976).
5. W.D. Halford and R.P. Kerr, J. Math. Phys. 21, 120 (1980).
6. J.D. Finley, III and Andrew Price, in Aspects of General Relativity and mathematical Physics (Proceedings of a Conference in Honor of Jerzy Plebański), eds. N. Bretón, R. Capovilla \& T. Matos, (Centro de Investigación y de Estudios Avanzados del I.P.N., Mexico City, 1993).
