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Abstract
In the search for vacuum solutions, with or without a cosmological constant,
�, of the Einstein field equations of Petrov type N with twisting principal null
directions, the CR structures to describe the parameter space for a congruence
of such null vectors provide a very useful tool. Work of Hill, Lewandowski and
Nurowski has given a good foundation for this, reducing the field equations to
a set of differential equations for two functions, one real and one complex, of
three variables. Under the assumption of the existence of one Killing vector, the
(infinite-dimensional) classical symmetries of those equations are determined
and group-invariant solutions are considered. This results in a single ODE
of the third order which may easily be reduced to one of the second order.
A one-parameter class of power series solutions, g(w), of this second-order
equation is realized, holomorphic in a neighborhood of the origin and behaving
asymptotically as a simple quadratic function plus lower order terms for large
values of w, which constitutes new solutions of the twisting type N problem.
The solution found by Leroy, and also by Nurowski, is shown to be a special
case in this class. Cartan’s method for determining equivalence of CR manifolds
is used to show that this class is indeed much more general. In addition, for
a special choice of a parameter, this ODE may be integrated once to provide
a first-order Abel equation. It can also determine new solutions to the field
equations, although no general solution has yet been found for it.

PACS numbers: 04.20.Jb, 02.40.Tt, 02.30.Hq

1. Introduction

The search for general classes of solutions of the Einstein equations that either have pure
vacuum for their source or a non-zero cosmological constant, that are of Petrov type N, and
have principal null rays with non-zero twist has been continuing for a very long time now. We
will use the (relatively common) nomenclature ‘Einstein spaces’ for solutions with this sort of
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a source, i.e. either the pure vacuum or that vacuum with a non-zero cosmological constant,
�, appended to it. With this idea firmly in mind, there are only two solutions known so far for
twisting type N Einstein spaces: the one described by Hauser [1, 2], which has � = 0, and
the one by Leroy [3] with a non-zero value for �, but which in the limit � → 0 degenerates
to a flat solution rather than one of type N. Because of the apparent difficulty of the problem,
many different approaches have been used to attempt the finding of such a solution. With
a requirement of one or more Killing vectors the problem can be reduced to the solution
of a single, nonlinear ODE, which has been produced in several forms by different authors
[4–7]; nonetheless, this approach has produced no new solutions. Looking at the problem as
a reduction from complex-valued manifolds via Plebański’s hyperheavenly equation [8] has
produced no new solutions [9]. Therefore, we were quite interested when we became aware
of a different approach via a recent paper by Paweł Nurowski [11], looking for exact solutions
of this type with a non-zero cosmological constant.

Many of Nurowski’s research articles use the fact that one can productively study (four-
dimensional) Lorentz geometries which admit a shearfree, geodesic null congruence of curves
by viewing the three-parameter space that picks out any particular curve in the congruence as
a (three-dimensional) CR structure [12]. In [10], he and his collaborators use the CR function
in such a structure to create a very appropriate choice of coordinates for a twisting type N
Einstein space, and reduce the Einstein equations to a set of nonlinear PDEs for a couple of
functions of three variables. Then in [11], he makes a clever ansatz depending only on a single
variable and discovers a particular twisting solution; unfortunately, that solution turns out to be
the same as the one mentioned above first found by Leroy, as he notes in a more recent paper
[13]. However, we were quite intrigued by the approach and have made some efforts to follow
it through with the hope of obtaining more general solutions of the equations in Nurowski’s
article.

A spacetime of type N allows one, and only one, congruence of twisting, shearfree, null
geodesics, referred to as a principal null direction (PND); this (three-parameter) family of null
geodesics allows the option to choose a single coordinate r along any such geodesic, and to
associate the other three degrees of freedom with the parameter space as a model for a CR
manifold. We first insist that our manifold admits a Killing vector in the real direction in this
(three-dimensional) CR manifold, so that the remaining unknown functions depend only on the
complex coordinates there, and then calculate the (infinite-dimensional) classical symmetries
for the system. This allows us to derive a quite simple nonlinear third-order ODE which the
invariant solutions of the classical symmetries must satisfy. Because this equation does not
contain the independent variable explicitly, it can be immediately reduced to the following
second-order ODE, for g = g(w), with two slightly different forms that differ by a constant:

g′′ = − (g′ + 2w)2

2g
− 2C

g
− 10

3
, C = 0 or 1. (1)

We are then able to show that the Leroy–Nurowski solution is indeed a special solution for this
equation. At this point it is worthwhile to introduce a question as to how one knows that the new
solution of Nurowski does indeed describe locally1 the same manifold as the solution found
by Leroy. The method was originally created by Cartan [15–17] to prove equivalencies of
CR structures, without the need of actually determining an explicit coordinate transformation
between the two sets of coordinates on two manifolds. Instead, one determines the values of
a set of invariant quantities for a CR structure, the same for all such equivalent structures.
Therefore, it is necessary to calculate the invariants for Leroy’s solution and compare them

1 All our considerations are local, both in the Lorentz-signature spacetime and in the associated complex spaces we
need to use.
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with the ones already known to Nurowski for his solution, noting that they are the same
constants. We have therefore also calculated these invariants for our class of solutions, which
we found to be quite different.

For the case when the constant C in (1) is zero, an integral transformation may be
performed to reduce that equation further, to a first-order ODE of Abel type, for f = f (t):

f ′ = 4

t

(
t + 3

2

)(
t + 1

3

)
f 3 + 5

t

(
t + 2

5

)
f 2 + 1

2t
f ,

which, quite unfortunately, we have not been able to identify as any of the known solvable
types of Abel equations [18, 19]. Nonetheless, we believe that these two equations, at the
time of publication, are the simplest ODEs available that determine nontrivial twisting type
N Einstein spaces. Returning to the case when C = 1, our current examinations suggest
the possibility that the solutions of this equation might define a new class of transcendental
functions, which constitutes the major result of this paper, establishing a new set of solutions
to the type N problem with � �= 0. The remainder of the paper will describe the process
involved in this and our reasons for stating that these are indeed new solutions. In particular,
we will present solutions to (1) in the forms of power series and Puiseux series, both shown to
be locally convergent. Although prior to this time there were indeed only two known twisting
type N Einstein spaces, it is always worth remembering that the solution space for the problem
is in fact quite large. It has been shown by Sommers [20] that the full set of solutions for type
N is given by two complex functions of two real variables. Surely, the requirement of non-zero
twist puts a very strong constraint on this, but it is expected that there should be a large number
of new analytic functions involved in the full solution of the twisting type N problem.

2. CR structures and reduced Einstein equations

As already mentioned, those (four-dimensional) Lorentz geometries which admit a shearfree,
geodesic null congruence of curves have some history of people using CR structures to study
them. They were first introduced in mathematics by Poincaré and extensively studied by Cartan
[15, 16]. Good sources of background on the relation of these two geometric concepts may be
found, for instance in the thesis of Nurowski [21], and also in the very detailed discussion of
their use for Einstein spaces in his article with Hill and Lewandowski [10], which generalized
earlier work to include the possibility of a non-zero cosmological constant.

The approach to a Lorentz-signature manifold begins with the usual form for the metric
[22] in terms of a basis of four null 1-forms, modified for our choice of signature, (+,+,+,−):

g = 2(θ1θ2 + θ3θ4), (2)

where θ2 is the complex conjugate of θ1, while θ4 and θ3 are real, and the product is the
usual symmetric product of 1-forms to create the metric. For Einstein spaces of type N, which
have only one PND, we call its tangent vector k, which is a well-defined vector field in the
neighborhood of each point, and take θ3 = g(k, ·) as its dual 1-form. The requirement that
the twist of k should be non-zero is equivalent to the restriction that θ3 ∧ dθ3 �= 0. We also
choose a real coordinate r as a parameter along this congruence, and a real function P �= 0
on the manifold so that k = P−1∂r (∂r ≡ ∂/∂r, r ∈ R). This congruence, still locally, is a
three-parameter family of null shearfree geodesics, so that at each value of r, the manifold
still needs three additional coordinates. Following the work described in detail in [10], one
is able to describe those degrees of freedom as coming from a three-dimensional, strictly
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pseudoconvex CR manifold, M, equipped with (at least) one non-constant CR function ζ , and
classes of pairs of 1-forms λ (real) and μ (complex) such that

λ ∧ μ ∧ μ̄ �= 0, μ = dζ , μ̄ = dζ̄ ,

dλ = iμ ∧ μ̄ + (cμ + c̄μ̄) ∧ λ
(3)

with c being a complex-valued function on M. A CR structure is a three-dimensional real
manifold M equipped with an equivalence class of pairs of 1-forms, (λ, μ), as above. Another
pair (λ′, μ′) is considered equivalent to (λ, μ), and therefore simply another representative of
the same equivalence class, iff there are functions f �= 0 (real) and h �= 0, g (complex) on M
such that

λ′ = f λ, μ′ = hμ + gλ, μ̄′ = h̄μ̄ + ḡλ. (4)

This CR manifold can be lifted into a spacetime, so that the tetrad may be displayed in the
following way [10]:

θ1 = P μ, θ2 = P μ̄,

θ3 = P λ, θ4 = P(dr + Wμ + W̄ μ̄ + Hλ).
(5)

Of course, this is exactly the form that a spacetime with such a distinguished PND is supposed
to have [22].

Referring back to (5), we can see that the twist is just proportional to λ ∧ dλ. Using (3)
to determine this, we see that these forms have been chosen to put the non-zero character of
the twist very clearly in evidence as non-zero. However, still looking at those equations, the
function c that appears there is quite an important new function on the manifold. Using the
closure of the equations in (3), one determines an important reality condition on the derivatives
of c:

∂ c̄ = ∂̄c,

once a dual basis of vector fields is introduced, which, however, is not a commutative basis:

(∂0, ∂, ∂̄ ) dual to (λ, μ, μ̄),[
∂, ∂̄

] = −i∂0, [∂0, ∂] = c∂0,
[
∂0, ∂̄

] = c̄∂0.

At this point, one has sufficient information to write out the explicit forms of the Einstein
equations, which, in generality, say that R12 = � = R34 with all the other components of
the Ricci tensor vanishing. We quote from [10] and [11] which show that the results are the
following:

P = p

cos
(

r
2

) , W = ia(1 + e−ir), H = qeir + q̄e−ir + h,

where the functions a, q (complex) and h, p (real), all independent of r, satisfy

a = c + 2∂ log p,

q = 2

3
�p2 + 2∂ p∂̄ p − p(∂∂̄ p + ∂̄∂ p)

2p2
− i

2
∂0 log p − ∂̄c,

h = 2�p2 + 2∂ p∂̄ p − p(∂∂̄ p + ∂̄∂ p)

p2
− 2∂̄c.

Given all the above, the functions a, c, h, p and q define a twisting type N Einstein space, of
the form given in (2) and (5), iff the unknown functions c and p satisfy the following system
of PDEs on M:

∂ c̄ = ∂̄c (6)[
∂∂̄ + ∂̄∂ + c̄∂ + c∂̄ + 1

2 cc̄ + 3
4 (∂ c̄ + ∂̄c)

]
p = 2

3�p3, (7)
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�3 = 0, R33 = 0. (8)

as well as one inequality

�4 �= 0,

in order that the spacetime should not be conformally flat. In terms of those variables already
defined, the Ricci tensor component R33 and the Weyl scalars �3 and �4 take on quite nasty-
looking expressions

R33 =
[

8

p4
(∂ + 2c)(p2∂ Ī) − 8�

(
4

3
�p2 + 6(c̄∂ + c∂̄ ) log p + 12∂ log p ∂̄ log p

+ 3cc̄ − ∂̄c − 2i∂0 log p

)]
cos4

( r

2

)
,

�3 =
[

2i

p2
∂ Ī − 4i�(2∂̄ log p + c̄)

]
eir/2 cos3

( r

2

)
,

�4 =
{

2i

p2
∂0Ī + 4

3
�[(∂̄ + c̄)(2∂̄ log p + c̄) + 2(2∂̄ log p + c̄)2]

}
e−ir/2 cos3

( r

2

)
,

where the function I is defined by

I = ∂(∂ log p + c) + (∂ log p + c)2.

Following the procedure of [10] (with the use of Maple) which calculated the curvature tensor
using Cartan’s structure equations, we present the calculated �4 above (simplified with the
use of �3 = 0) for � �= 0, which we believe has not been previously published. Despite the
frightening appearance of R33, equations (7) and �3 = 0 together do imply the requirement
R33 = 0. This tells us that within the established formalism the twisting type N solutions to
the Einstein equations automatically satisfy the condition for an Einstein space, i.e. vacuum
with or without a cosmological constant. For � = 0, the statement is obviously true (see also
[22] p 451) and was used in [10] to prove the CR embeddability of twisting type N vacuums,
without the cosmological constant. For � �= 0, one uses (7) to substitute the term 4

3�p2 in R33

and notes that the resulting expression is a linear combination of ∂�3 and �3. The equation
R33 = 0 is therefore superfluous for the type N problem, which facilitates our calculation
greatly.

3. Killing vector in the u-direction

It is useful to understand the meaning of the operator ∂ by introducing a real coordinate system
(x, y, u) on M such that we have

ζ = x + iy, ∂ζ = 1
2

(
∂x − i∂y

)
,

∂ = ∂ζ − L∂u, ∂0 = i(∂̄L − ∂L̄)∂u,
λ = du + Ldζ + L̄dζ̄

i(∂̄L − ∂L̄)
, (9)

with L = L(ζ , ζ̄ , u) being a complex-valued function [23]. In addition, the function L relates
to the function c in the following way:

c = −∂ ln(∂̄L − ∂L̄) − ∂uL. (10)

One major difficulty of fully solving the system ((6)–(8)) is that unlike ordinary coordinate
differentiations, the selected (dual) basis for the tangent space is not commutative, and, even
worse, the operator ∂ itself involves the unknown function c. When this dependence on the real

5
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coordinates is written out explicitly, the original PDEs become formidably lengthy. Instead of
facing this entire conundrum, we have decided to circumvent it, at least in this paper, by looking
at the special case where the unknowns p and c have no u-dependence, i.e. ∂0 p = 0 = ∂0c.
Geometrically speaking, we insist that the spacetime admits a Killing vector in the u-direction.
Such an assumption simplifies the problem greatly in that one can treat the operator ∂ the
same as ∂ζ , when acting on either p or c. This is a generalization of the assumption made
by Nurowski [11], where it was simplified to just dependence on y, i.e. two Killing vectors
assumed.

Theorem 1 (CR embeddability[14]). A CR structure (3) with c = c(ζ , ζ̄ ) is CR embeddable.
From this particular form of c, a u-independent form of the function L can be constructed as

L(ζ , ζ̄ ) = − i
2

∫
α(ζ , ζ̄ ) dζ̄ (11)

with a real-valued function α �= 0 satisfying

∂ζα = −c α, ∂ζ̄ α = −c̄ α. (12)

Associated with this L, the tangential CR equation ∂̄η = 0 yields a second CR function:

η = u + i
2

∫∫
α(ζ , ζ̄ ) dζ dζ̄ . (13)

Proof. Because of the restraint ∂ζ c̄ = ∂ζ̄ c, the system (12) is compatible and has a real solution
α �= 0. Henceforward one can directly check that (11) satisfies (10) and that (13) satisfies
the equation ∂̄η = (∂ζ̄ − L̄∂u)η = 0. Clearly, the CR functions η and ζ are functionally
independent, i.e. dζ ∧ dη �= 0. Therefore we acquire a second CR function.

For a given function c = c(ζ , ζ̄ ), equation (10), viewed as a PDE for L, may give rise
to multiple choices of the function L, hence various λ’s. However, such an ambiguity only
constitutes different representatives of the same CR structure. To see this, one may look into
the six Cartan invariants (details in section 6) and note that they are all uniquely determined
by the function c = c(ζ , ζ̄ ) (see, e.g., (28) and appendix B), given that the function r defined
in (28) does not vanish. For CR structures with r = 0, they are all locally equivalent to a
three-dimensional hyperquadric inside C

2 [15, 17]. An alternative proof would be to show
that there always exists a coordinate transformation u → ũ(ζ , ζ̄ , u) (∂ ũ/∂u �= 0) that takes a
function L = L(ζ , ζ̄ , u) satisfying (10) to the u-independent form (11). This can be confirmed
by checking the compatibility of PDEs regarding such an existence. In conclusion, the CR
structure on M is uniquely determined once a function c = c(ζ , ζ̄ ) is given.

The converse of the last statement above is, however, not true. In fact various choices of
the function c may correspond to the same CR structure. We will see examples of this in later
sections. Related to this matter, our assumption of the function c being u-independent is thus
not a CR invariant property. A function c = c(ζ , ζ̄ ) may acquire u-dependence through the
transformation (4) that takes one representative (λ, μ) of the CR structure to another.

Now we apply the assumption and the following notations:

∂ f → ∂ζ f = f1, ∂̄ f → ∂ζ̄ f = f2, f = f0, ( f = p, c and c̄ only)

and then rewrite the system ((6)–(8)) as

c̄1 = c2, (14)

2p12 + c̄0 p1 + c0 p2 + 1
2 c0c̄0 p0 + 3

4 (c̄1 + c2)p0 = 2
3�p3

0, (15)

6
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p0 p122 − p1 p22 + 2c̄0 p0 p12 − 2c̄0 p1 p2 + 2c̄1 p0 p2 + (c̄12 + 2c̄0c̄1)p2
0 = 2�(2p2 + c̄0 p0)p3

0,

(16)

where the last equation arises from �3 = 0. These are the PDEs we aim to solve. Moreover,
the Weyl scalar �4 reads

�4 = 4

3
�

[
2p0 p22 + 6p2

2 + 10c̄0 p0 p2 + (c̄2 + 3c̄2
0)p2

0

]e−ir/2

p2
0

cos3
( r

2

)
. (17)

�

4. Infinite-dimensional classical symmetries

We follow the standard procedure (e.g. [24]) to calculate the classical symmetries of the system
((14)–(16)). Since (16) is generally complex, we have to include its complex conjugate as well
in the calculation. Moreover, we treat (14) as a constraint and encode it and its differential
consequences directly into the choice of intrinsic coordinates so that this equation no longer
needs further attention. This gives us three PDEs for three dependent variables p, c and c̄
which depend on two independent variables ζ and ζ̄ . The intrinsic coordinates within the first
four jets that are relevant to the calculation are chosen as follows:

p0, c0, c̄0,

p1, p2, c1, c̄1, c̄2,

p11, p22, c11, c̄22,

p111, p222, c111, c̄222.

The rest of the jet variables, such as p12, p122, c̄12(= c22) etc, can be expressed in terms of the
intrinsic coordinates through the PDEs and their differential consequences.

With a considerable amount of manual work on the algebraic computer program Maple,
we have managed to find the classical symmetries with the generating section given by

� = − 1
2 (∂ζ A + ∂ζ̄ Ā)p0 − Ap1 − Āp2,


 = ∂2
ζ A − (∂ζ A)c0 − Ac1 − Āc̄1,


̄ = ∂2
ζ̄
Ā − (∂ζ̄ Ā)c̄0 − Ac̄1 − Āc̄2,

where A = A(ζ ) is an arbitrary function of ζ that is sufficiently differentiable. The Lie bracket
of two symmetries with, respectively, A1(ζ ) and A2(ζ ) yields a third symmetry with a new
A3(ζ ) given by

A3 = [A1, A2] := A1∂ζ A2 − A2∂ζ A1.

Therefore, we indeed obtain an infinite-dimensional set of classical symmetries for the system
((14)–(16)). In particular, they reduce to translational symmetries for nonzero constant A, and
scaling symmetries for A ∝ ζ .

5. Group-invariant solutions and reductions to ODEs

Setting the generating section (�,
, 
̄) to zero and solving for p, c and c̄, we are able to
obtain a remarkable ansatz for the Einstein equations:

p(ζ , ζ̄ ) = F1(z)√
AĀ

, c(ζ , ζ̄ ) = ∂ζ A + iF2(z) + C1

A
, c̄(ζ , ζ̄ ) = ∂ζ̄ Ā − iF2(z) + C1

Ā
(18)

7
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with a new real argument

z = −i

(∫
1

A
dζ −

∫
1

Ā
dζ̄

)
= Im

∫
2

A
dζ , (19)

where the constant C1 and the undetermined functions F1,2(z) are all real-valued. One may
easily verify these expressions by direct calculation.

Substituting the ansatz into (15) and (16) and noting that all dependence on A, Ā �= 0,
except those in the argument z, can be factored out, we have a neat reduction from the PDEs
to a system of two ODEs for F1 and F2 only:

0 = −F ′′
1 + F2F ′

1 + 1
3�F3

1 − 1
4

(
F2

2 − 3F ′
2 + C2

1

)
F1,

0 = −F ′′
1 F1 + (F ′

1 )2 + �F4
1 + F ′

2F2
1 .

The satisfaction of the second ODE above is given by the introduction of a single new,
real-valued function J = J(z) such that

F1 = ±
√

J′, F2 = J′′

2J′ − �J. (20)

Then the first ODE simply becomes

J′′′ = (J′′)2

2J′ − 2�JJ′′ − 10

3
�(J′)2 − 2

(
�2J2 + C2

1

)
J′. (21)

Since this ODE does not have the argument z appearing explicitly, we can lower the order of
the ODE through the standard transformation

J′ = P(J) 
⇒ J′′ = PP′ 
⇒ J′′′ = P(PP′)′

and obtain an even simpler equation of the second order

P′′ = − (P′ + 2�J)2

2P
− 2C2

1

P
− 10

3
�. (22)

A solution P = P(J) to (22) can give rise to a solution J = J(z) to (21) at least locally by
inverting

z + C0 =
∫

1

P(J)
dJ (23)

with C0 being constant. This solution will be physical if it also makes F1,2(z) real-valued via
(20), which requires that locally

P(J) > 0, J′ > 0 and J real-valued. (24)

Therefore, we are only interested in solutions for J(z) that are monotonically increasing, or
equivalently, positive P(J).

We can also consider the special case of (22) with C1 = 0 and � �= 0, i.e.

P′′ = − (P′ + 2�J)2

2P
− 10

3
�. (25)

By introducing the following integral transformation:

J = 1

�
exp

(∫
f (t) dt

)
, P(J) = t

�
exp

(
2
∫

f (t) dt

)
,

of which the inverse has the form

t = P

�J2
, f (t) = �J2

JP′ − 2P
,

8
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we can further reduce (25) to an Abel ODE of the first kind [28], as already noted in the
introduction:

f ′ = 4

t

(
t + 3

2

)(
t + 1

3

)
f 3 + 5

t

(
t + 2

5

)
f 2 + 1

2t
f . (26)

Once the general solution f = f (t,C2) is acquired with a constant C2, we can find the general
solution P(J) of (25) by solving the following ODE:

f

(
P

�J2
,C2

)
= �J2

JP′ − 2P
,

of which the solution is given by

P(J) = Z(J)J2, with 0 = − ln J +
∫ Z/�

f (t,C2) dt + C3. (27)

Simple as both (22) and (26) may appear, so far we have had no luck finding their explicit
general solutions. For more comments on (26) and Abel ODEs in general, see appendix A.

6. CR equivalency as classical symmetry

To identify new twisting type N Einstein spaces obtained from (21), we refer to the following
theorem as a natural way to classify metrics equipped with CR structures.

Theorem 2 ([10], see theorem 1.2 and references therein). Let (M, g) be a four-dimensional
manifold equipped with a Lorentzian metric and foliated by a three-parameter family of
shearfree null geodesics. ThenM is locally a Cartesian productM = M×R. The CR structure
(M, (λ, μ)) on M is uniquely determined by (M, g) and the shearfree null congruence on M.

By definition, a type N spacetime at each point has a unique PND. In the case of vacuums
(with or without �), a PND must be geodesic and shearfree [25]. Thus for every twisting type N
Einstein space, the shearfree null congruence is unique. Hence to confirm a new twisting
type N vacuum metric, it is sufficient to show that its CR structure is distinct from one of the
known metrics. This can be routinely done by computing the six Cartan invariants [15–17],
which are denoted respectively by

αI, θI, ηI (complex),

βI, γI, ζI (real).

Cartan showed that two local CR structures are equivalent iff their six CR invariants (defined
when r �= 0 in (28)) are identical, except possibly for a sign difference in both αI and ηI

[15]. With the assumption of u-independence, we can write down, for instance, the simplest
invariant computed from the 1-forms defined in (3):

αI(ζ , ζ̄ ) = −5r̄∂ζ r + r∂ζ r̄ + 8crr̄

8
√

r̄ · 8
√

(rr̄)7
,

r = 1
6 (∂ζ̄ l̄ + 2c̄l̄), l = −∂ζ ∂ζ̄ c − c∂ζ̄ c. (28)

Here, the function r �= 0, following the notation of Cartan, is not to be confused with the
coordinate r along the null congruence. For our calculated βI, γI and θI , see appendix B.
Note that this αI only relies on c(ζ , ζ̄ ), c̄ and their derivatives, which is also the case for all the
other Cartan invariants. We first point out a remarkable feature of these invariants computed
from the ansatz ((18), (19)).

Proposition. Given the ansatz ((18), (19)), all the following quantities are independent of
A(ζ ) and Ā(ζ̄ ) except those in the argument z:

α2
I , η

2
I , αI η̄I, βI, γI, θI, ζI .

9
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In another word, they are all functions of z only, e.g., βI(ζ , ζ̄ ) = βI(z).

Proof. Except for a lengthy but straightforward symbolic computation with Maple, we are, at
the moment, still not aware of any other more insightful way of proving this result. Here, we
only emphasize that the law

√
v
√

w = √
vw is in general not true in the complex domain;

failing to note this may cause an erroneous conclusion. �
Remark. For a fixed z, the presence of the functions A and Ā in αI and ηI themselves only
affects their signs. More specifically, the only dependence on A and Ā takes the following
forms:

αI ∝ 1

A(ζ )

√
A2(ζ )

F(z)
, ηI ∝ 1

Ā(ζ̄ )

√
Ā2(ζ̄ )

F̄(z)
,

F(z) = −F ′′′
2 + (F ′

2 )2 + 3F2F ′′
2 − 2F2

2 F ′
2 + 2C2

1F ′
2 + iC1

(
3F ′′

2 − 4F2F ′
2

)
.

Hence the product αI η̄I is a function of z only. According to Cartan [15], this sign situation
is accounted for by a local CR diffeomorphism and therefore does not generate a new CR
structure. Hence, we have proved the following theorem.

Theorem 3. Locally, the CR structure (3) (as an equivalence class) determined by the function
c given in ((18), (19)) is independent of the choice of the function A(ζ ) �= 0, once the form of
F2(z) is fixed.

Altogether, the freedom of choosing various A(ζ ) �= 0 does not affect the CR structure of a
type N metric which we are considering. Hence, for the simplicity of representing new metrics
distinguished by the CR structure, we can just set A(ζ ) = Ā(ζ̄ ) = 2 (see the conclusions).
In hindsight, the classical symmetries we have obtained are nothing more than a particular
manifestation of underlying CR equivalency. We believe that this connection between the two
may as well suggest a more general concern if one aims to find, through the (classical or
higher) symmetries, additional exact solutions to the Einstein equations formulated with CR
structures.

We will see later examples of solutions that have constant CR invariants, and remarkably,
one of them is the solution of Leroy–Nurowski. Nonetheless, this feature is generally not true
for other solutions.

7. Conformally flat solutions

Before we try to solve (21) for type N solutions, it is important to find out in advance those
conformally flat solutions satisfying �4 = 0 which are automatically contained in the general
solution of (21). We insert the ansatz ((18), (19)) into the expression for �4 given by (17), and
re-normalize �4 to pull out just a simple complex-valued function of z:

K(z) := − 3Ā2F2
1 eir/2

4� cos3
(

r
2

)�4

= 2F1F ′′
1 + 6(F ′

1 )2 − 10(F2 + iC1)F1F ′
1 + ( − F ′

2 + 3F2
2 + 6iC1F2 − 3C2

1

)
F2

1 . (29)

We now apply (20) and use (21) to substitute for J′′′, which gives us

K = [
�JJ′′ − 2

3�(J′)2 + 2
(
�2J2 − 2C2

1

)
J′] + i[−2C1(J

′′ + 3�JJ′)], (30)

or in terms of P(J),

K = P
[
�JP′ − 2

3�P + 2�2J2 − 4C2
1

] + i[−2C1P(P′ + 3�J)],

10
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where we have put the real and imaginary parts in separate brackets. Replacing J′′ with the
help of (30), we can rewrite equation (21) as

0 = 1
3�K(J′)2 − (2�KJ + K′)(�J − 2iC1)J

′ + 1
2 K2

which clearly has K = 0, i.e. all conformally flat solutions, as some of its solutions.
If P(J) is not restricted to the real domain, then solving the first-order ODE K = 0 for

P(J) leads to the following general solution:

P(J) = −3

2
�

(
J2 + 4C2

1

�2

)
+ C2

(
J ± 2iC1

�

)2/3

, (31)

with a complex constant C2.
If, instead, we restrict P(J) to be real, a simultaneous vanishing of the real and imaginary

parts of K respectively yields the following set of two equations, provided P �= 0:

0 = C1(P
′ + 3�J),

P′ = 2P

3J
− 2�J + 4C2

1

�J
,

both of which are consistent with (22). There are now two cases for solutions.
The case C1 �= 0 requires that both ODEs be satisfied, so that we have a unique solution

P(J) = −3

2
�J2 − 6C2

1

�
(32)

which, by solving J′ = P(J), gives rise to

J = 2C1

� tan(3C1(z + C0))
. (33)

In the limit C1 → 0, the above solution becomes even simpler2:

J = 2

3�(z + C0)
. (34)

From (33), we have

F1 = ±
√

6C1

s sin(3C1(z + C0))
, F2 = − 5C1

tan(3C1(z + C0))
(35)

with negative-valued � = −s2. Note that it is only at this stage that the reality condition on
F1,2, i.e. J′ > 0, requires � < 0, i.e. a negative cosmological constant. An important remark
that can be made is that the extended form of the Leroy–Nurowski solution (see the next
section) resembles this solution greatly with simply differences in the coefficients.

For the other case when C1 = 0, we have

P(J) = − 3
2�J2 + C2J2/3 (36)

with a real constant C2. From (23), the solution J(z) is determined by∫
1

− 3
2�J2 + C2J2/3

dJ = z + C0. (37)

Since J′ > 0, we cannot have both � > 0 and C2 � 0. Hence, we can discuss three other sign
possibilities, the details of which are put in appendix C.

We note that the special solution (34) corresponding to C1 = C2 = 0 serves as the single
‘point’ where these two families of conformally flat solutions are joined up.

2 Both (33) and (34) would be of particular importance for the perturbation theory on type N solutions near flat ones.

11
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Modulo possible sign differences in αI and ηI caused by square roots as already discussed,
the Cartan invariants for both (33) and (34), as calculated via (28) and the equations for the
other invariants, as presented in appendix B, are given by

αI = −4i

ε

4

√
2

5
, βI = 41

2
√

10
, γI = 29

2
√

10
,

θI = 3i

√
2

5
, ηI = − i

ε
· 219/4

53/4
, ζI = −327

40
, ε = ±1. (38)

Remarkably, they are all constant and do not depend on C1. Nonetheless, this is not the case
for the other conformally flat solutions obtained from (37) with C2 �= 0 of which the Cartan
invariants are generally functions of z and C2. For instance, simplified by (36) and J′ = P(J),
the first Cartan invariant satisfies

α2
I (z,C2) = −16

√
2

5

(
3�J4/3 + 2C2

3�J4/3 − 2C2

)2

, (39)

where J = J(z) belongs to one of the three cases described in appendix C.
Two conformally flat Einstein spaces may have non-equivalent CR structures. This does

not conflict with the previous theorem because in a conformally flat spacetime, one is free
to make different choices from among the multiple shearfree null congruences and therefore
may have non-equivalent CR structures attached to them.

8. An extended form of the Leroy–Nurowski solution

Now we can reveal a fuller extent of the exact twisting type N solution first discovered by
Leroy, and re-derived by Nurowski within the framework of CR geometry, upon the latter of
which our current work is mainly based. We hope that our derivation of this solution will make
the process behind the previous discoveries appear clearer.

Given Nurowski’s form of the solution (see [11] or (47)) and recasting it into the form of
the ansatz (18), (19) and (20), we find the following special solution to (22):

P(J) = −1

3
�J2 − 3C2

1

4�
(40)

which gives rise to a solution to (21):

J = 3C1

2� tan
(

1
2C1(z + C0)

) . (41)

In the limit C1 → 0, the above expression becomes even simpler:

J = 3

�(z + C0)
, (42)

which is quite similar to that of (34). Back to the case with C1 �= 0, using (20), we have

F1 = ±
√

3C1

2s sin
(

1
2C1(z + C0)

) , F2 = − 2C1

tan
(

1
2C1(z + C0)

) (43)

with a negative � = −s2. Note that it is only at this stage that the reality condition on F1

requires � < 0. In the end, our extended version of the Leroy–Nurowski solution takes the
form

p(ζ , ζ̄ ) = ± i
√

3C1

2s sinh
(

i
2C1(z + C0)

)√
AĀ

, (44)

12
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c(ζ , ζ̄ ) = 1

A

[
∂ζ A + 2C1

tanh
(

i
2C1(z + C0)

) + C1

]
, (45)

z = −i

(∫
1

A
dζ −

∫
1

Ā
dζ̄

)
. (46)

The flexibility of choosing the function A(ζ ) and real constant C0,1 may perhaps facilitate
a possible future application of the solution. From this extended version, one can obtain the
original form of Nurowski [11] by setting

A(ζ ) = C1ζ , Ā(ζ̄ ) = C1ζ̄ , C0 = 0,

and consequently,

p(ζ , ζ̄ ) = ± i
√

3

s(ζ − ζ̄ )
, c(ζ , ζ̄ ) = 4

ζ − ζ̄
, �4 = 14s2

3y2
e−ir/2 cos3

( r

2

)
. (47)

Note that all C1s are canceled out in the above expressions. Hence another way of obtaining
(47) is by taking the limit C1 → 0 in (44) and (45) (cf (42)) and setting C0 = 0 and A(ζ ) = 2.

Modulo possible sign differences in αI and ηI caused by square roots as already discussed,
the Cartan invariants calculated from (41) and (42) are both given by

αI = 1

ε

√
1

2

√
3

5
, βI = −1

2

√
3

5
, γI = 1

2

√
3

5
,

θI = i

√
3

5
, ηI = −1

ε
· 23/2

31/4 · 53/4
, ζI = − 1

20
, ε = ±1. (48)

Like (38), they are all constant and do not depend on C1.

9. An example of power series solutions

For simplicity, assume that C1 = 0 in the ODE (21). Now consider the power series solution
of (21) satisfying the regular initial conditions J(0) = 0, J′(0) = u0 > 0 and J′′(0) = 0. A
simple calculation gives us the first few terms of this series

J(z) =
∞∑

i=0

uiz
i+1 = u0z − 5

9
�u2

0z3 + 16

45
�2u3

0z5 + · · · . (49)

Moreover, this series solution, convergent in a neighborhood of z = 0 according to the Cauchy
existence and uniqueness theorem, is of type N with a non-vanishing Weyl scalar �4 ∝ K(z).
Particularly,

K(0) = − 2
3�u2

0 �= 0.

To see that solution (49) is not equivalent to the Leroy–Nurowski solution, we calculate the
first Cartan invariant αI(z) via (28) which, in this case, is no longer a constant. In particular,
this series solution has

αI(0) = 0,

with αI(z) and also K(z) continuous at z = 0, while the values given in (48) are always
non-zero constants. This is sufficient to assert that the ODE (21) as well as its reductions (22)
and (26) indeed contain new twisting type N solutions.

13
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10. One-parameter deformation from a conformally flat solution to the
Leroy–Nurowski solution

One feature that makes (22) preferable to the other two ODEs (21) and (26) is that the
conformally flat solution (32) and the extended Leroy–Nurowski solution (40) are just simple
quadratic functions, without poles in the complex plane, compared to their counterparts (33)
and (41). Also note that these quadratic solutions with C1 = 0 do not correspond to any
solution of the Abel equation (26) since the form (27) with the non-constant function Z(J)

excludes all quadratic functions as solutions. These well-behaved quadratic solutions facilitate
a study of the power series solutions near them. Additionally in appendix E, we also present a
Puiseux series solution to (22), the existence of which is suggested by the weak Painlevé tests
performed in appendix D.

To simplify the notation, we apply the scaling transformation3 J = C1w/�, P(J) =
C2

1g(w)/� with � �= 0, C1 �= 0 such that (22) takes on the form already noted as (1) with
C = 1:

g′′ = − (g′ + 2w)2

2g
− 2

g
− 10

3
. (50)

We look for power series solutions for this equation corresponding to the regular initial
conditions g(0) = u0 �= 0, g′(0) = 0. The first few terms of this series read

g(w) =
∞∑
j=0

u jw
j

= u0 − 5
(
u0 + 3

5

)
3u0

w2 − 2
(
u0 + 3

4

)
(u0 + 6)

27u3
0

w4 − 76
(
u0 + 3

4

)
(u0 + 6)

(
u0 + 33

38

)
1215u5

0

w6 + · · · ,
(51)

where all odd order terms vanish. The remainder of the coefficients in the series can be
determined by a recursion relation which is valid beginning with u6:

0 = (2k + 1)(k + 1)u0u2k+2 +
(

2k + 5

3

)
u2k +

k−1∑
l=0

(k + l + 1)(l + 1)u2l+2u2k−2l, k � 2,

(52)

while u2 and u4 can be easily read off from (51). It is clear that this relation allows one to
calculate the coefficients to whatever order desired. One can easily see that the coefficient of
w2k, namely u2k, is a kth order polynomial, Pk(u0), divided by u2k−1

0 �= 0. Remarkably, this
infinite series reduces to simple quadratic functions in two special cases. The reason for this is
that for every value of k � 2, the polynomial Pk(u0) has the factors

(
u0 + 3

4

)
(u0 + 6), as can

be seen in the few terms demonstrated in (51) above and can easily be shown by induction.
Hence for u0 = − 3

4 , we retrieve the Leroy–Nurowski solution (40), which in this notation is
simply

gLN = −
(

1

3
w2 + 3

4

)
. (53)

As well, for u0 = −6, we retrieve a conformally flat solution (32), which has the form

gCF = −
(

3

2
w2 + 6

)
. (54)

3 Once having a solution g(w), one may choose a sign for � in order to have P(J) > 0.
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For all other values of u0 �= 0, the formal series solution (51) may then be viewed as a
generalization of these two known solutions in terms of a power series with infinitely many
terms. It is interesting that in every one of these polynomials, Pk(u0), all coefficients are
negative, so that the only possible real roots would be negative. Our numerical calculations
suggest that none are smaller than −6, and that there are no other roots common to all these
different polynomials.

The series (51) does define, in the complex domain, a function holomorphic in some
neighborhood of the origin as is shown by the following method of determining a non-zero
radius of convergence for it. We present the proof in appendix F.

Theorem 4. Given the series (51) with the recursion relation (52) and a fixed u0 �= 0, one has
the following bound:

|u2 j| � CM2 j

(2 j)2
, j = 2, 3, · · · , (55)

provided that one can pick two constants C > 0 and M > 0 such that they satisfy∣∣∣∣∣2
(
u0 + 3

4

)
(u0 + 6)

27u3
0

∣∣∣∣∣ � CM4

16
, (56)

(
5

3
+ 1

|u0|
)

9

4M2
+

(
π2

12
− 1

4

)
C � |u0|. (57)

The existence of such an upper bound (55) on u2 j guarantees a lower bound M−1 on the
radius of convergence. For instance, if we take u0 = −2, which lies nicely in the interval
between − 3

4 and −6, we can at least pick

C = 1
10 , M−1 = 3

5

satisfying both (56) and (57). The bound (55) is by no means optimal at every u0 �= 0. In fact,
our numerical integrations of (50) with u0 being sampled between −6 and − 3

4 all indicate that
in the real domain, the series solutions (51) with −6 < u0 < − 3

4 are all well sandwiched
between the parabolic curves of (53) and (54), and therefore suggest an infinite radius of
convergence on the real line. Moreover, by applying the transformation w → 1

w
to (50) and

studying the formal (Puiseux) series expansion of the transformed ODE at the origin, we find
the following asymptotic expansion4 of (50) as w → ∞ (cf (54)):

g ∼ − 3
2w2 − 6 + u4/3w

2/3 + O(w−1/3),

where u4/3 is an arbitrary constant. This asymptotic behavior at infinity, consistent with
our numerical calculations, again suggests that we may significantly extend the radius of
convergence for (51) at least in the real domain.

An additional comment is that the Cartan invariant αI , computed from (51) with
−6 < u0 < − 3

4 , is not constant and has a dependence on C1, contrary to the special cases for
those values of u0 at the two endpoints of the interval of values for u0 being considered.

11. Conclusions

We have begun with the advantage of prior work done on the use of (three-dimensional) CR
manifolds to look for solutions of the Einstein field equations that correspond to algebraically

4 We also find another asymptotic expansion that has the first two leading terms identical to (53), but also involves
fractional powers of w in a complicated way, hence not presented here.
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degenerate Einstein spaces with twisting principal null directions. A general solution of those
reduced field equations for the two functions of three variables would generate all twisting
solutions of Petrov type N. Of course, we did not achieve this; however, after the assumption
of a single Killing vector in a particular direction, our ansatz for group-invariant solutions
obtained from the infinite-dimensional classical symmetries of the field equations allowed
us to obtain a single ODE, the solutions of which would generate a family of solutions of
type N with twisting principal null directions. That ODE is either a rather simple, third-order
nonlinear equation for J = J(z) in which the independent variable z does not appear or,
equivalently, an even simpler, second-order nonlinear equation for g = g(w), where w is a
dimensionless re-scaling of J and g is a re-scaling of J′, which includes a non-zero value
for �, the cosmological constant. Within the same ansatz, we have also investigated all the
cases of solutions corresponding to conformally flat spacetimes to which type N solutions may
degenerate, which helps us look for non-trivial cases.

We have studied this second-order equation at some length. In particular, it contains one
parameter, C1, which may always be re-scaled to the value +1 unless it happens to be zero.
In the case that it is zero, the equation can be reduced still further to a first-order equation
of Abel type. Following standard approaches to Abel equations we were unable to determine
any method that we thought would generate reasonable type N solutions, although this is
still an ongoing project of considerable interest. However, when C1 is not zero we have
considered various sorts of solutions which it might have. We have shown that it does have
solutions which are holomorphic, in the complex plane in a neighborhood of the origin, and
have found an asymptotic behavior near the (real) infinity. In particular, we have picked out
those solutions which are even functions of w and looked at power-series solutions about the
origin, both analytically and numerically via a Maple computer program. We have determined
a moderately simple recursion relation for the coefficients of the powers of w2 in the series
solutions, which determines the coefficient u2k+2 of w2k+2 (k � 2) in terms of all the previous
coefficients, looking at all of them as determined by the value of g(0) = u0. This series
terminates quickly for just two particular values of u0, in the form −a(u0)w

2 + u0, with a
constant, different for the two values of u0. The value u0 = − 3

4 generates the previously
known Leroy–Nurowski solution, while the other one u0 = −6 is unfortunately simply a
conformally flat solution. To ensure that these series solutions are distinct from the Leroy–
Nurowski solution, we have used the work of Cartan on the question of the equivalence of two
CR manifolds, which requires the equality of the set of six Cartan invariants. We have found
that any value of u0 between these two special values generates Cartan invariants that are quite
different from those at the endpoints of this interval, and therefore distinct from those of the
Leroy–Nurowski solution.

The solutions characterized by values of u0 between −6 and − 3
4 have an asymptotic

behavior, via a Puiseux series around the (real) infinity, that has the same form −a(−6)w2 −6
as the conformally flat solution aforementioned, but also lower order terms involving third
roots of w, which undoubtedly generate algebraic singularities there. Numerical integrations
via Maple agree with this behavior, showing negative values of g(w) as needed and very simple
structure for all real values of w. The same numerical integrations do show singularities in the
solutions for u0 > − 3

4 . As well, numerical calculations of the coefficients u2k+2, for several
values of u0 ∈ (−6,− 3

4

)
(e.g., u0 = − 301

400 ), show that starting at a large enough k, they
alternate in sign while their absolute values are monotonically decreasing at rapid rates. We
therefore postulate that these solutions are everywhere non-singular and well-behaved on the
real axis, and believe that they might define new well-behaved, transcendental functions with
algebraic singularities off the real w-axis. The proof of such a conjecture is still being pursued;
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nonetheless, we feel that the numerical calculations justify the belief that this is a sufficiently
interesting result as to merit the attention of a wider audience.

To conclude the discussion, we present here our new class of metrics, which, without loss
of generality, may be considered by setting A(ζ ) = 2 in ansatz (18). Although we will present
it here with the new real coordinate z introduced in (19), with this choice of A(ζ ) it is the
same as the usual coordinate y used in (9). As well, our studies with the equation for P(J),
equivalently g(w), allow us to replace z by its form in terms of J as determining the imaginary
part of dζ , via dz = dJ/P(J), namely,

ζ = x + iz = x + iz(J), dζ = dx + idz = dx + i

P
dJ.

For simplicity of presentation, we show both forms below, with coordinates {x, z, u, r} or
{x, J, u, r}:

g = J′

2 cos2( r
2 )

[dζ dζ̄ + λ (dr + W dζ + W̄ dζ̄ + Hλ)]

with real-valued J = J(z), J′ ≡ dJ/dz = P(J) > 0 and P′ ≡ dP/dJ such that

W = 1

2

(
J′′

2J′ + �J + iC1

)
(e−ir + 1) = 1

2

(
1

2
P′ + �J + iC1

)
(e−ir + 1),

H = −1

6
�J′ cos(r) = −1

6
�P cos(r),

where C1 is an arbitrary real parameter. The function L as in ∂ = ∂ζ − L∂u can be chosen so
as to be real-valued:

L = −e−C1x
∫

exp

(∫
F2 dz

)
dz = −e−C1x

∫
1

P
exp

(∫
F2

P
dJ

)
dJ,

such that from (9),

λ = eC1x du − 2
[ ∫

exp
( ∫

F2 dz
)

dz
]

dx

exp
( ∫

F2 dz
) = eC1x du − 2

[ ∫
P−1 exp

( ∫
F2P−1dJ

)
dJ

]
dx

exp
( ∫

F2P−1 dJ
) ,

where F2 is given by

F2 = J′′

2J′ − �J = 1
2 P′ − �J.

Meanwhile, the functions J(z) and P(J) respectively satisfy

J′′′ = (J′′)2

2J′ − 2�JJ′′ − 10

3
�(J′)2 − 2

(
�2J2 + C2

1

)
J′,

P′′ = − (P′ + 2�J)2

2P
− 2C2

1

P
− 10

3
�.

In particular, the original metric by Nurowski [11] corresponds to the case C1 = 0, J = 3
�z

and a proper choice of the integration constants in λ.
We can here note the philosophy that certain ODEs themselves may serve the purpose

of defining new transcendental functions; for instance, we recall the Painlevé functions and
the associated ODEs. Hence our situation with new type N solutions being determined by a
second-order nonlinear ODE is presumably not too different from that of Hauser’s solution
(in terms of hypergeometric functions [1]) which is determined by a second-order linear
ODE, although it is true that there has already been much more extensive studies made on the
properties of hypergeometric functions than have been made for newer functions defined by
solutions of nonlinear ODEs that may not even have the Painlevé property.
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Appendix A. The Abel ODE

Equation (26) actually does have the following special solution:

fCF = − 3

4t + 6
. (A.1)

However, it can be shown to correspond to a conformally flat solution (36), and hence is not
interesting.

Unfortunately, we have had no luck so far finding the general solution to (26) or any
other special solution other than (A.1). Since constructing the general solution to the generic
The Abel ODE has remained an open problem for decades; the general strategy of integration
nowadays mainly lies in recognizing, within a suitable class of transformations, the ODE in
question as equivalent to a previously solved equation. Such a procedure has been programmed
into the current state-of-the-art Maple code dsolve(orabelsol) [18, 19], which presumably
covers all/most of the integrable classes presented in Kamke’s book [26] and various other
references (e.g., [27]). However, this code, as tested by us, does not recognize (26) as a known
solved type, e.g., the AIR class. Other attempts by us, such as the symmetry method, on finding
special solutions all have failed or just led to (A.1).

So far we have not been able to find a similar reduction for the ODE (22) with C1 �= 0,
nor can we negate the possibility that (22) with C1 �= 0 may contain different type N solutions
other than the case with C1 = 0. In fact, the Cartan invariants calculated with (21) generally do
have a dependence on the constant C1 even though this is not the case for all the conformally
flat solutions and the Leroy–Nurowski solution (see (38) and (48)).

Appendix B. Cartan invariants

A concise description of Cartan invariants can be found in section 2.1.3 of [21]. Given
c = c(ζ , ζ̄ ) and

r = 1
6 (∂ζ̄ l̄ + 2c̄l̄), l = −∂ζ ∂ζ̄ c − c∂ζ̄ c,

taken from (28) where αI is presented, the next three Cartan invariants, when r �= 0, read

βI(ζ , ζ̄ ) = 1

32(rr̄)9/4
[3r̄2∂ζ̄ r∂ζ r + 3r2∂ζ r̄∂ζ̄ r̄ − rr̄(∂ζ r̄∂ζ̄ r

+ 7∂ζ r∂ζ̄ r̄ + 16c̄r̄∂ζ r + 16cr∂ζ̄ r̄ − 8rr̄∂ζ̄ c + 16cc̄rr̄)],

γI(ζ , ζ̄ ) = −1

32(rr̄)9/4
[7r̄2∂ζ̄ r∂ζ r + 7r2∂ζ̄ r̄∂ζ r̄ − rr̄(8r∂ζ ∂ζ̄ r̄ + 8r̄∂ζ ∂ζ̄ r

+ ∂ζ r̄∂ζ̄ r + ∂ζ r∂ζ̄ r̄ + 4cr̄∂ζ̄ r + 4c̄r∂ζ r̄ + 4cr∂ζ̄ r̄ + 4c̄r̄∂ζ r

+ 24rr̄∂ζ̄ c + 16cc̄rr̄)],

θI(ζ , ζ̄ ) = −i

16r(rr̄)7/4
[5r̄2(∂ζ̄ r)2 + 5r2(∂ζ̄ r̄)2 − rr̄(4r∂2

ζ̄
r̄ + 4r̄∂2

ζ̄
r

− 2∂ζ̄ r∂ζ̄ r̄ − 4c̄r̄∂ζ̄ r − 4c̄r∂ζ̄ r̄ + 16rr̄∂ζ̄ c̄)].

Due to the length of ζI and ηI as calculated with Maple for our studies, we will not put them
here. All Cartan invariants are uniquely determined by the function c = c(ζ , ζ̄ ).

Appendix C. Conformally flat solutions

For a further integration of (37), we have three separate cases.
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Case 1. � < 0, C2 > 0. We always have J′ � 0. Then the solution is determined by

ln
G2 + √

2GM + M2

G2 − √
2GM + M2

+ 2 arctan

( √
2GM

M2 − G2

)
= −2

√
2M3(z + C0),

M = ±
(

−2C2�
1/3

3

)1/4

, G = (�J)1/3.

In the real domain, the inverse function J = J(z) is well defined over z + C0 ∈( − π√
2|M3| ,

π√
2|M3|

)
instead of the entire real line, and has singularities at z + C0 = ± π√

2|M3| .
Case 2. � < 0, C2 < 0. We need |J| � (2C2/3�)3/4 for J′ � 0. The solution is

determined by

ln

∣∣∣∣M + G

M − G

∣∣∣∣ + 2 arctan

(
G

M

)
= 2M3(z + C0),

M = ±
(

2C2�
1/3

3

)1/4

, G = (�J)1/3, |J| �
(

2C2

3�

)3/4

.

In the real domain, the inverse function J = J(z) is well defined over z + C0 ∈( − ∞,− π
2|M3|

) ∪ (
π

2|M3| ,+∞)
and has singularities at z + C0 = ± π

2|M3| .
Case 3. � > 0, C2 > 0. We need |J| � (2C2/3�)3/4 for J′ � 0. The solution is

determined by

ln

∣∣∣∣M + G

M − G

∣∣∣∣ + 2 arctan

(
G

M

)
= 2M3(z + C0),

M = ±
(

2C2�
1/3

3

)1/4

, G = (�J)1/3, |J| �
(

2C2

3�

)3/4

.

In the real domain, the inverse function J = J(z) from above is well defined over the entire
real line.

Appendix D. Weak Painlevé tests

We have three ODEs (21), (22) and (26) at hand that may be explored for new twisting type N
solutions. A particular, probably useful way to decide which one of these equations has a better
chance for one to find a solution is given by the (weak) Painlevé test [29–31]. This test reveals
the nature of the movable singularities of the general solution of a nonlinear ODE. Failing
the test means the occurrence of certain undesirable movable singularities, e.g., infinitely
branched singularities, that relate to non-integrability [31], although it may still be possible to
find special solutions. Associated with the (weak) Painlevé test is the global property called the
(weak) Painlevé property. An ODE possesses the Painlevé property if the general solution is
be made single valued. For the weak Painlevé property, it requires that the general solution be
at most finitely branched around any movable singularity. The tests themselves are by design
sets of necessary conditions respectively for these properties.

In this appendix, we will show that none of the three ODEs pass the Painlevé test, and
that (21) also fails the weak Painlevé test while the other two pass. To begin, we detail the test
procedures in (22). Then we briefly comment on (26) and simply point out where the tests fail
for (21) without dwelling on details.

Equation (22) surely does not have the Painlevé property for the coefficient of the (P′)2

term clearly violates the necessary conditions for the Painlevé property [29] (see p 127). This
is also confirmed by the test conclusion that (22) has movable algebraic singularities.

Step 1 (Dominant behaviors). Assume the leading behavior of a solution P(J) to be

P ∼ u0χ
m, χ = J − J0, u0 �= 0, m �= 0,
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with m not a positive integer. Substitute this form into (22) and select out all possible lowest
order terms as listed below:

3

2
u2

0m

(
m − 2

3

)
χ2m−2, 2�u0J0mχm−1, 2

(
�2J2

0 + C2
1

)
.

Since m �= 1, we only have two possibilities. For m < 1, χ2m−2 is the lowest order term and
the vanishing of its coefficient requires

m = 2

3
given u0, m �= 0. For m > 1, the constant 2

(
�2J2

0 + C2
1

)
is the lowest order term, which does

not vanish in general, hence not interesting for the purpose. To summarize, we obtain m = 2
3

with arbitrary u0 �= 0, i.e

P ∼ u0(J − J0)
2/3

is the only detected dominant behavior.

Step 2 (Resonance conditions [29] (see p 87)). Having found the dominant behavior, now
we consider the possibility to extend it to a Puiseux series expansion

P =
∞∑
j=0

u j(J − J0)
( j+2)/3.

This requires the determination of the locations ( j +2)/3, called Fuchs indices or resonances,
where arbitrary coefficients may enter the Puiseux series. Consider the dominant terms

Ê(J, P) = PP′′ + 1
2 (P′)2

of (22) that contribute to the leading behavior χ2m−2 = χ−2/3. Then compute the derivative

lim
ε→0

Ê(J, P + εV ) − Ê(J, P)

ε
= (

P∂2
J + P′∂J + P′′)V.

The Fuchs indices satisfy the so-called indicial equation

lim
χ→0

χ− j−(2m−2)
(
P∂2

J + P′∂J + P′′)χ j+m = u0( j + 1) j = 0.

Hence, we obtain a fractional resonance at ( j + 2)/3 = 2
3 with j = 0.

Step 3 (Compatibility conditions). At j = 0, we know, from the first step, that u0( �= 0)

is indeed an arbitrary coefficient. This completes the test. In conclusion, (22) passes the weak
Painlevé test.

Remark. Note that no pole is detected from the test above. The ODE for P3 still involves
a Puisuex series instead of a Laurent series since the cubing does not eliminate all third roots
of χ . According to [31], The presence of movable algebraic singularities is not incompatible
with integrability.

The very design of the weak Painlevé test limits its usage only as necessary conditions
for the weak Painlevé property. The test can neither detect movable (branched) essential
singularities themselves nor exclude an accumulation of algebraic singularities forming a
movable essential one that may be severely branched. These possibilities make a rigorous
proof of the weak Painlevé property not at all a trivial one, which by itself may deserve a
specialized article to discuss. See examples in [32–34].

According to Painlevé [35, 36], the only movable singularities of solutions to the first-
order ODE y′ = F(x, y), where F is rational in y with coefficients that are algebraic functions
of x, are poles and/or algebraic branch points. In addition, the only nonlinear ODE in this
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class that has the Painlevé property is the Riccati equation which (26) is certainly not. Hence
equation (26) automatically has the weak Painlevé property, but not the Painlevé property, and
it is free from movable essential singularities.

The equation (21) admits two families of dominant behaviors (cf (34) and (42)):

J ∼ 2

3�(z − z0)
, Fuchs indices = −1,

4

3
,

7

3
;

J ∼ 3

�(z − z0)
, Fuchs indices = −1,−1 + √

57

2
,−1 − √

57

2
.

It fails the weak Painlevé test for having irrational resonances. This means that (21) has an
infinitely branched movable singularity, which is a strong indicator for non-integrability [31].

Since our attempt of solving (26) has not been successful, we decided to focus on (22)
and explore some of its features that may facilitate constructing new solutions.

Appendix E. Puiseux series solutions

As indicated by the weak Painlevé test, the ODE (22) for P(J) possesses a formal Puiseux
series solution

P =
∞∑

k=0

uk(J − J0)
(k+2)/3

= u0(J − J0)
2/3 − 3�J0(J − J0) − 9

(
�2J2

0 + 4C2
1

)
20u0

(J − J0)
4/3

− 3�J0
(
�2J2

0 + 4C2
1

)
5u2

0

(J − J0)
5/3 −

[
3

2
� + 27

(
109�2J2

0 + 36C2
1

)(
�2J2

0 + 4C2
1

)
2800u3

0

]

× (J − J0)
2 + · · · (E.1)

with two arbitrary complex constants u0 �= 0 and J0. In particular, this Puiseux series solution
contains a special case for J0 = ±2iC1/� (� �= 0) such that

P = u0

(
J ± 2iC1

�

)2/3

− 3

2
�

(
J2 + 4C2

1

�2

)
.

This finite expression coincides with the known solution (31) (setting u0 = C2).

Theorem 5. Given that u0 �= 0 and u0, J0 ∈ C, the ODE (22) admits a formal Puiseux series
solution (E.1) such that it converges in a neighborhood of J0.

Proof. The idea of the proof, following many standard proofs of Painleve property, is to convert
the Puiseux series into a power series solution of a regular initial value problem (e.g. [32, 34]).
First we define

Z = P1/2(P′ + 4�J). (E.2)

Then differentiate it once with respect to J and substitute P′′ using (22). Hence we obtain

Z′ = 2
(
�P − 3�2J2 − 3C2

1

)
3P1/2

. (E.3)

The system ((E.2), (E.3)) is equivalent to the ODE (22). Now by introducing a new variable
U = P1/2, we can transform the system into

dJ

dU
= 2U2

Z − 4�UJ
,

dZ

dU
= −4

(
3�2J2 − �U2 + 3C2

1

)
U

3(Z − 4�UJ)
, (E.4)
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which has a unique power series solution about U = 0,

J = J0 + 2

3Z0
U3 + · · · ,

Z = Z0 − 2
(
�2J2

0 + C2
1

)
Z0

U2 + · · · . (E.5)

By the Cauchy existence and uniqueness theorem, both series have non-vanishing radii of
convergence. From series (E.5), the corresponding solutions to ((E.2), (E.3)) then take the
form

P =
[

3Z0

2
(J − J0)

]2/3

+
∞∑

k=1

uk(J − J0)
(k+2)/3,

Z = Z0 +
∞∑

k=0

vk(J − J0)
(k+2)/3,

with Z0 �= 0. This completes the proof. �

Series (E.1) clearly contains type N solutions that are not equivalent to Leroy–Nurowski’s
since they all continuously deform to the conformally flat solution (36) in the limit J0 → 0,
C1 → 0. We already know that the latter has a non-constant Cartan invariant αI given by (39).

Appendix F. Proof of theorem 4

The induction begins with

|u4| � CM4

16
,

which holds by assumption (56). Now assume that for k � 2 and j = 2, . . . , k, the bound (55)
is true. Then for k � 3 and 1 � l � k − 2, we can bound the product u2l+2u2k−2l by

|u2l+2u2k−2l | � C2M2k+2

(2l + 2)2(2k − 2l)2

� 2

[
(2k − 2l)2 + (2l + 2)2

(2k + 2)2

]
C2M2k+2

(2l + 2)2(2k − 2l)2

= 2

[
1

(2l + 2)2
+ 1

(2k − 2l)2

]
C2M2k+2

(2k + 2)2
. (F.1)

The second inequality above is due to (a2 + b2)/(a + b)2 � 1
2 . Rearranging (52) and using

the triangular inequality together with (F.1), we obtain an upper bound for |u2k+2|:

|u2k+2| �
(
2k + 5

3

)|u2k| + (2k2 + k + 1)|u2u2k|
(2k + 1)(k + 1)|u0| +

∑k−2
l=1 (k + l + 1)(l + 1)|u2l+2u2k−2l |

(2k + 1)(k + 1)|u0|
�

(
2k + 5

3

) + (2k2 + k + 1)|u2|
(2k + 1)(k + 1)|u0| ·CM2k

(2k)2
+ S(k)

2(2k + 1)(k + 1)|u0| ·
C2M2k+2

(2k + 2)2
, k � 2,

(F.2)

where we define

S(k) =
k−2∑
l=1

(k + l + 1)(l + 1)

(l + 1)2
+

k−2∑
l=1

(k + l + 1)(l + 1)

(k − l)2
, k � 3, and S(2) = 0.
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We can evaluate the first summation above in terms of the digamma function
k−2∑
l=1

(k + l + 1)(l + 1)

(l + 1)2
= k�(k) − (2 − γ )k � k�(k),

where γ is Euler’s constant, which is approximately 0.57721 · · ·. The second summation has
the following bound:
k−2∑
l=1

(k + l + 1)(l + 1)

(k − l)2
=

k−2∑
l=1

(2k − l)(k − l)

(l + 1)2

� 2k2
k−2∑
l=1

1

(l + 1)2
=

(
π2

3
− 2

)
k2 − 2k2�(1, k) �

(
π2

3
− 2

)
k2.

Note that the trigamma function �(1, k) � 0 for all integers k � 3 and that �(1, k) ∼ k−1 for
k → +∞. Combining these two bounds, for k � 3, we obtain

S(k)

2(2k + 1)(k + 1)
� (π2/3 − 2)k2 + k�(k)

2(2k + 1)(k + 1)

� (π2/3 − 2)k2 + k2

4k2
= π2

12
− 1

4
,

where we use the fact that 0 � �(k) � k for all integers k � 3. In addition, the first term in
(F.2) is bounded by(

2k + 5
3

) + (2k2 + k + 1)|u2|
(2k + 1)(k + 1)|u0| · CM2k

(2k)2
�

(
2k + 5

3

) + (2k2 + k + 1)
(

5
3 + 1

|u0|
)

(2k + 1)(k + 1)|u0| · CM2k

(2k)2

� 1

|u0|
(

5

3
+ 1

|u0|
)

(k + 1)2

k2M2
· CM2k+2

(2k + 2)2

� 1

|u0|
(

5

3
+ 1

|u0|
)

9

4M2
· CM2k+2

(2k + 2)2
,

where the last inequality becomes an equality for k = 2. Altogether, we obtain for k � 2

|u2k+2| � 1

|u0|
[(

5

3
+ 1

|u0|
)

9

4M2
+ δ2

k

(
π2

12
− 1

4

)
C

]
CM2k+2

(2k + 2)2
� CM2k+2

(2k + 2)2
,

given assumption (57). Here, δ
j
k is the Kronecker delta. This completes the induction.
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