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Abstract
We investigate a new class of twisting type N vacuum solutions with nonzero
(positive) cosmological constant � by studying the equations of geodesic
deviations along the privileged radial timelike geodesics, generalizing J Bičák
and J Podolský’s results on non-twisting type N solutions. It is shown that these
twisting radiative spacetimes can be interpreted as exact transverse gravitational
waves propagating in the de-Sitter universe, with a distinctive feature that all the
wave amplitudes are proportional to �. Moreover, we demonstrate the cosmic
no-hair conjecture in these spacetimes and discuss their Killing horizons.

PACS numbers: 04.30.−w, 04.20.Jb, 95.36.+x, 98.89.−k

1. Introduction

In a recent paper [1], we presented a new class of twisting type N vacuum solutions of
the Einstein equations with nonzero cosmological constant �. These type N solutions admit
a twisting congruence of shearfree and null geodesics aligned with the unique quadruple
principal null direction. They were shown subject to a rather simple-looking second-order
nonlinear ODE as imposed by the field equations for type N. Various special and series
solutions were found or constructed from this ODE. In this paper, we move on to discuss
their physical meanings and show that these new exact solutions can serve as models for the
behavior of gravitational waves in cosmology.

Certain aspects of these solutions, such as the conformal factor, conformal infinities,
periodicity, etc, can be found in the general discussion on algebraically special twisting
spacetimes by Hill and Nurowski [2]. Here we focus on the local interpretation associated
with the equation of geodesic deviation. Similar analysis has been done for non-twisting type
N solutions with �, i.e. Kundt class and Robinson–Trautman class, by Bičák and Podolský
[3] (see also [4, 5]). However, a complication for our solutions is that the nonzero twist is
associated with certain non-integrability, and therefore causes a lack of two-dimensional wave
surfaces in the spacetimes that always exist in non-twisting solutions. Hence due to extra cross
terms in the metric, the coordinate basis adopted in [3] cannot be directly used in our more

0264-9381/13/075021+10$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1



Class. Quantum Grav. 30 (2013) 075021 X Zhang and D Finley

complicated twisting solutions, and we decide that it would be much more convenient to use
non-holonomic bases instead, and therefore we generalize all derivations to such bases. In
fact, we find that all major results involving the equations of geodesic deviation remain the
same for this generalization.

In the next section, we review the solutions discovered in [1] and present their Levi-
Civita connection 1-forms and the only non-vanishing Weyl scalar, �4. Then in section 3,
we write down the general geodesic equations in the non-holonomic basis and use Killing
symmetries to simplify them. In sections 4 and 5, a frame for a physical observer and an
associated null tetrad basis are constructed along arbitrary timelike geodesics, with respect
to which the relative motion of test particles is studied. Conditions are given to determine
those geometrically privileged geodesics along which the observer’s frame can be parallel-
transported. Hence in section 6, these privileged geodesics are identified as the radial geodesics
and determined explicitly. Their properties are discussed in section 7, which are all pointing to
a Killing horizon. In section 8, we calculate wave amplitudes along radial timelike geodesics
and demonstrate that the observer sees gravitational waves decaying exponentially fast, which
agrees with the cosmic no-hair conjecture. At the end, we make comments on the appearance
of � as a proportionality factor in the waves amplitudes, which we find quite unusual.

2. The twisting type N vacuum spacetimes with nonzero �

With the real coordinate system xα = (x, J, u, r), the metric found in [1] can be written as

g = 2(ω1ω2 + ω3ω4), (1)

where the null tetrad is given by

ω1 = R dζ , ω2 = R dζ̄ ,

ω3 = R λ, ω4 = R
(
dr + W dζ + W̄ dζ̄ + Hλ

)
,

(2)

with real-valued P = P(J) > 0 and P′ ≡ dP/dJ such that

dζ = dx + i

P
dJ, λ = du + 2L dx

−P∂JL
,

L = −e−C1x
∫
1

P
exp

(∫
P′ − 2�J

2P
dJ

)
dJ,

R =
√

P

2 cos r
2

, −π < r < π,

W = 1

2

(
1

2
P′ + �J + iC1

)
(e−ir + 1), H = −1

6
�P cos r. (3)

Here C1 is an arbitrary real parameter and the function P(J) must satisfy

P′′ = − (P′ + 2�J)2

2P
− 2C21

P
− 10

3
�, (4)

as required by the vacuum Einstein field equations with real arbitrary constant �. By the
transformation J = w/�, P = g(w)/� > 0, with � �= 0, the above equation can be put into
a �-independent form

g′′ = − (g′ + 2w)2

2g
− 2C21

g
− 10

3
. (5)

These ODEs allow solutions for either� > 0 or� < 0, though the construction of the explicit
general solution, if possible, still remains an open problem. (See [1] for examples of special
solutions and series solutions.)
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Now we introduce the non-holonomic null basis {eα} = {e1, e2, e3, e4} dual to the
tetrad (2):

e1 = 1

R
(∂ − W∂r), e2 = 1

R
(∂̄ − W̄∂r),

e3 = 1

R
(∂0 − H∂r), e4 = 1

R
∂r, (6)

where we define

∂ = ∂ζ − L∂u, ∂ζ = 1
2 (∂x − iP∂J ),

∂0 = i(∂̄L − ∂L̄)∂u = −P(∂JL)∂u.
(7)

In particular, the vector field e4 is tangent to a twisting congruence of shearfree null geodesics,
and is also aligned with the quadruple principal null direction of the metric. To ensure a
nonzero twist along this congruence (also for the basis {eα} to be valid), it is required that

i(∂̄L − ∂L̄) = −P(∂JL) �= 0. (8)

With all said, we present components of the Levi-Civita connection 1-forms �λ
μ = 	λ

μνω
ν

calculated from Cartan’s structure equations dωλ + �λ
μ ∧ ωμ = 0 for the null tetrad (2):

	121 = −	122 = i

8R
[(e−ir + 1)P′ + 2(e−ir − 1)(�J + iC1)],

	123 = − i

12R
�P(2+ cos r), 	124 = − i

2R
,

	231 = 1

12R
�P

(
ie−ir − tan r

2
+ 2i

)
,

	233 = i

24R
�P(e−ir + 1)(P′ + 2�J − 2iC1),

	241 = i e−ir/2

2R cos r
2

	341 = 	342 = − i

8R
[(e−ir − 1)P′ + 2(e−ir + 1)(�J + iC1)],

	343 = 1

12R
�P(2+ cos r) tan

r

2
, 	344 = 1

2R
tan

r

2
,

	232 = 	234 = 	242 = 	243 = 	244 = 0. (9)

Those unlisted components can be obtained by either �μν = −�νμ or complex conjugation
on (9) which interchanges the indices 1 ↔ 2 and leaves 3 and 4 unchanged, e.g., 	214 = 	124,
	211 = 	122. The only non-vanishing Weyl scalar is

�4 = C3232 = −�

3

[
�JP′ − 2

3
�P + 2�2J2 − 4C21 − 2iC1

(
P′ + 3�J

)]
e−ir/2 cos3

r

2

= −�

3

[
wg′ − 2

3
g + 2w2 − 4C21 − 2iC1

(
g′ + 3w)]

e−ir/2 cos3
r

2
, (10)

which, being proportional to �, requires � �= 0 for type N solutions. In addition, the metric
has the following two Killing vectors [6]

∂u, ∂x − C1u ∂u, (11)

which we will use to simplify the geodesic equations.
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3. Geodesic equations

Using the non-holonomic basis (6), we consider a freely falling test particle (observer) with
the 4-velocity

uα = (u1, u2, u3, u4), u1 = u2,

along an arbitrary timelike geodesic such that

u · u = 2(u1u2 + u3u4) = ε (12)

with ε = −1 (also, ε = 0 if one considers null geodesics). From the fact that u = uαeα = ẋμ∂xμ

as expressed in non-holonomic and coordinate bases, we obtain

ẋ = 1

2R
(u1 + u2), J̇ = − iP

2R
(u1 − u2),

u̇ = − 1
R
[L(u1 + u2) + P(∂JL)u3],

ṙ = − 1
R

(Wu1 + W̄u2 + Hu3 − u4). (13)

with · ≡ d/dτ and τ the proper time. The geodesic equations read

0 = du1

dτ
+ 	2μνuμuν, 0 = du2

dτ
+ 	1μνuμuν,

0 = du3

dτ
+ 	4μνuμuν, 0 = du4

dτ
+ 	3μνuμuν, (14)

from which one can verify, using (9), that d
dτ (u1u2 + u3u4) = 0 (hence, the length (12) is

constant along geodesics). For a Killing vector ξμ, the product uμξμ is a conserved quantity
along geodesics with the 4-velocity uμ. Hence from (11), we find

C2 = R

−P∂JL
(Hu3 + u4),

C3 = R[u1 + u2 + (W + W̄ )u3]+ 2C2L − C2C1u(τ ), (15)

where C2 and C3 are real constants. One can show that the above two simpler equations
are indeed first integrals of the system (14). However, with an implicit P(J) generally
satisfying (4), these geodesic equations are still very complicated to solve directly for xμ(τ )

without additional assumptions.

4. Geodesic deviation

The equation of geodesic deviation reads

D2Zμ

dτ 2
= −Rμ

αβγ uαZβuγ , (16)

where u = dx/dτ = uαeα , u · u = −1 as introduced before, and Z(τ ) is the displacement
vector. Note that (16) is still valid despite the use of non-holonomic bases [7]. Following the
construction1 in [3], we set up the observer’s frame {e(α)} along the geodesic with e(4) = u
and spacelike orthonormal vectors {e(1), e(2), e(3)} in the local hypersurface orthogonal to u,
i.e. e(α) · e(β) = gμνeμ

(α)
eν
(β) = η(α)(β) = diag(1, 1, 1,−1). The dual basis is e(4) = −u and

e(i) = e(i), i = 1, 2, 3. Then we can project (16) onto the observer’s frame:

Z̈(α) ≡ e(α) · D2Z
dτ 2

= e(α)
μ

D2Zμ

dτ 2
= −R(α)

(4)(β)(4)Z
(β) (17)

1 We will use the indices {1, 2, 3, 4} for basis elements instead of {0, 1, 2, 3} adopted in [3], i.e. changing 0 to 4, and
changing the ordering.
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with Z(β) = e(β) · Z = e(β)
μ Zμ and R(α)(4)(β)(4) = eμ

(α)
uνeγ

(β)
uδRμνγ δ . Now we introduce the

second null basis {eα̂} = {e1̂, e2̂, e3̂, e4̂} = {m, m̄, l, k} associated with the observer’s frame:
m = 1√

2
(e(1) + ie(2)), m̄ = 1√

2
(e(1) − ie(2)),

l = 1√
2
(u − e(3)), k = 1√

2
(u + e(3)).

(18)

One can check that all derivations in section II of [3] also hold for our non-holonomic basis
{eα}. Here we only quote those results relevant to our purpose. To begin with, all test particles
should be synchronized so that Z(4) = 0 (they always stay in the same local hypersurface).
For type N spacetimes, the rest of (17) reads

Z̈(1) =
(

�

3
− A+

)
Z(1) + A×Z(2),

Z̈(2) =
(

�

3
+ A+

)
Z(2) + A×Z(1),

Z̈(3) = �

3
Z(3) (19)

with wave amplitudes of the two polarization modes given by

A+ = 1
2 Re �̂4, A× = 1

2 Im �̂4, �̂4 = Cαβγ δlαm̄β lγ m̄δ. (20)

Here �̂4 is calculated in the second null basis (18), hence different from, but related to
�4 in (10). Assuming that the observer’s frame {e(α)} is parallel-transported along u, i.e.
De(α)/dτ = 0, then we have Z̈(α) = D2(e(α) · Z)/dτ 2 = d2Z(α)/dτ 2, which makes (19) easier
to solve.

5. Parallel-transported frames

Given a radiative spacetime with a principal null direction k and an observer’s 4-velocity u,
we can construct the observer’s frame {e(α)} according to (18) together with the following
proposition .

Proposition 1 ([3]). Let u be the observer’s 4-velocity and k be the null vector (principal null
directions) that satisfy k · u = − 1√

2
. Then there is a unique spacelike vector e(3) = √

2k − u.

Another null vector l is given by l = √
2u − k such that l · k = −1. The only remaining

freedoms are rotations in the transverse plane (e(1), e(2)) perpendicular to e(3).

With the null basis {e1, e2, e3, e4}, the metric (1) takes the very simple form

gμν =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠. (21)

We take the vector field k to be aligned with the quadruple principal null direction e4, i.e.

kμ = (0, 0, 0, k4),

and recall that uμ = (u1, u2, u3, u4), u1 = u2 in the basis {eα}. The interpretation null basis
described in (18) and proposition 1 has the form

mμ =
(
0,−1, 0, u1

u3

)
, m̄μ =

(
−1, 0, 0, u2

u3

)
,

lμ =
(√

2u1,
√
2u2,

√
2u3,

√
2u4 + 1√

2u3

)
,

kμ =
(
0, 0, 0,− 1√

2u3

)
, (22)

5
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which is unique up to rotations m → eiθ m and trivial reflections. The corresponding
orthonormal frame in the basis {eα} is given by

eμ

(1) = 1√
2

(
−1,−1, 0, u1 + u2

u3

)
,

eμ

(2) = 1√
2

(
−i, i, 0, u1 − u2

iu3

)
,

eμ

(3) = −
(

u1, u2, u3, u4 + 1

u3

)
,

eμ

(4) = uμ = (u1, u2, u3, u4). (23)

One can check that these expressions are consistent with equations (18) and (19) of [3] when
applied to (21) with matrix elements rearranged accordingly.

In general, the frames {e(α)} and {eα̂} cannot be parallel-transported along the geodesic
withu = e(4).We can use the following proposition to single out those geometrically privileged
geodesics along which the interpretation frames are indeed parallel-transported. The detailed
proof can be found in [8] with no difficulty to be generalized for the non-holonomic basis (6)
with the metric (21).

Proposition 2 ([3, 8]). Given a geodesic with the tangent vector uμ = (u1, u2, u3, u4) in
the spacetime (21), the interpretation null basis (22) and the orthonormal frame (23) are
parallel-transported along the geodesic if

0 = 	14μuμ (24)

and

ϑ̇‖(τ ) = i	22μuμ (25)

where ϑ‖ is the rotation angle for m → m‖ = eiϑ‖m in order that Dm‖/dτ = 0.

6. Privileged geodesics

Now we apply the above results to our twisting type N spacetimes with �. First recall that
	242 = 	243 = 	244 = 0. Then the condition (24) and its complex conjugate are tantamount
to

u1 = u2 = 0, (26)

which, by (13), leads to

ẋ = J̇ = 0. (27)

Along such radial geodesics with fixed x and J, the geodesic equations are quite simplified
with the first two of (14) given by

0 = i�R

24P(∂JL)2
(e−ir + 1)(P′ + 2�J − 2iC1) u̇2 (28)

and its complex conjugate. The rest of (14) are given by

0 = ü +
(

�

6∂JL
tan

r

2

)
u̇2, (29)

0 = r̈ + tan r

2

(
ṙ2 − �

3 ∂JL
ṙu̇ − �2 cos r

18(∂JL)2
u̇2

)
. (30)

6
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The conserved quantities (15), i.e. first integrals of (29), (30), read

0 = ṙ + � cos r

3∂JL
u̇ + 4C2(∂JL) cos2

r

2
, (31)

0 = (W + W̄ )

∂JL
u̇ + 4(C1C2u − 2C2L + C3) cos

2 r

2
, (32)

in addition to the invariant length (12)

0 = ε

2
−

(
� cos r

24(∂JL)2 cos2 r
2

u̇ + C2

)
u̇. (33)

Note that ∂JL and L above are constant for fixed x and J and thatW is given by (3).
Now we proceed to solve the system ((28)–(30)). First note that the equation (28) gives

rise to the following two possibilities.
Case 1. We have u̇ = 0. Then (33) requires ε = 0. This is the case corresponding to null

geodesics along principle null directions. The geodesic equation (30) immediately gives us

0 = r̈ + ṙ2 tan
r

2
,

which has the general solution

r = 2 arctan(Aτ + B)

with A, B arbitrary real constants of integration.
Case 2. Assuming u̇ �= 0 and a given solution P0(J) to (4), we have, for (28) to hold,

0 = dP0(J)

dJ
+ 2�J, C1 = 0. (34)

The first equation above, with its right-hand side being a function of J, shall fix the value of J
which we call J0. In fact, combining (34) with (4), we know that J0 is also the point at which
the second derivative P′′

0 (J) reaches its maximum value −10�/3. Hence for a given P0(J),
we only have limited choices of J for the privileged geodesics described in proposition 2.
Nonetheless, the coordinate x can take on any arbitrary constant value which we denote as
x = x0. In what follows, such P = P0(J0) and x = x0 will always be assumed.

To solve the system ((29), (30)), one can first solve (29) for r and then combine the result
with the first integral (31) so as to obtain a third-order ODE for u(τ ) alone

0 = u̇ ˙̈u − ü2 − C2�

3
u̇3 − �2

36C2L
u̇4, � �= 0. (35)

Thus for this equation, we obtain in the real domain the following two different ways2 to
represent its general solution both of which we find suitable for timelike geodesics with� > 0
(cf (41)):

tanh

(
�

12CL
(u − E1)

)
= ±(eA1τ+B1 + D1), (36)

tanh

(
�

12CL
(u − E2)

)
=

√
1+ D22 tanh

(
A2τ + B2

2

)
+ D2, (37)

2 In the complex domain, the expressions (36) and (37) are in fact equivalent. To see this, one can separate a constant
from E1 and then use the addition theorem of tanh on the left-hand side of (36) and compare it with (37). However
in the real domain, this transformation from (36) to (37), for their full ranges of real integration constants, cannot
be achieved without generally going into the complex domain (e.g., note that arctanh(x) is complex for x > 1). For
certain limited ranges of real integration constants, the solutions (36) and (37) may represent the same solutions.

7
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with CL ≡ ∂JL(J0) �= 0 and real integration constants A1, B1, D1, E1 (C2 = A1D1/2CL) and

A2, B2, D2, E2
(
C2 = −A2/2CL

√
1+ D22

)
. By the equation (29), these u(τ )s yield respectively

r(τ ) = ±2 arctan
(

−1
2
e−(A1τ+B1 )(1− D21) − 1

2
eA1τ+B1

)
, (38)

r(τ ) = −2 arctan
⎛⎝ D22√

1+ D22

sinh(A2τ + B2) + D2 cosh(A2τ + B2)

⎞⎠. (39)

One can check that the expressions (36), (38) and (37), (39) all constitute general solutions
to (29), (30) in the real domain. In particular when D2 = 0 in (37), (39), one has a special
solution

u(τ ) = 6CL

�
(A2τ + B2) + E2, r(τ ) = 0, (40)

which is not included in the solution (36), (38). From (33), we obtain for both sets of solutions

ε = −3A
2
1,2

�
, (41)

with ε = −1 for timelike geodesics. In addition, the equation (32) yields trivially C3 =
2C2L(J0).

7. Radial timelike geodesics and Killing horizon

We continue to study timelike geodesics given by (36), (38) and (37), (39). For simplicity, we
only consider the more physically relevant situation with � > 0. Hence from (41), one has

A1,2 = ±
√

�

3
, � > 0 (42)

for timelike geodesics. Note that the range of the hyperbolic function tanh on the left-hand
sides of (36) and (37) is limited to the interval [−1, 1], while the right-hand sides are not.
Therefore the solution u(τ ) with its τ restricted by the reality condition may generally reach
infinity at some finite proper time. Nonetheless, whenever this happens at the critical value
τ = τc such that

eA1τc+B1 + D1 = ±1, D21 �= 1,

or √
1+ D22 tanh

(
A2τc + B2

2

)
+ D2 = ±1, D2 �= 0,

it always corresponds to

r(τc) = 2 arctan(∓1) = ∓π

2
, (43)

which are in fact very special hypersurfaces in the spacetime. We can see their significance
from the metric (1) with constant x and J

g̃ = − 1

2CL cos2 r
2

du

(
dr + �

6CL
cos r du

)
, −π < r < π, (44)

which indicates that the Killing vector ∂u is timelike for −π/2 < r < π/2 but spacelike for
−π < r < −π/2 and π/2 < r < π , and null at r = ±π/2. Thus that u(τ ) diverges at
r = ±π/2 under the metric (44) is very similar to that of the Schwarzschild solution in the

8
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Eddington–Finkelstein coordinates near r = 2m, the fact of which suggests a Killing horizon3

at r = ±π/2. Inside the region r = ±π/2, the spacetime is stationary with u being a time
coordinate (e.g., (40)). Particularly in the weak field limit �4 → 0 with finite � > 0 [1], one
can expect that r = ±π/2 approaches the cosmological horizon of the de Sitter universe.

8. Wave amplitudes

Nowwe calculate the wave amplitudesA+ andA× in (19). The null bases {eα} and {eα̂} (cf (6)
and (18)) are related by the Lorentz transformation

e4 = A e4̂,
e1 = eiθ e2̂ + B̄e4̂,
−e3 = A−1(e3̂ + Beiθ e2̂ + B̄e−iθ e1̂ + BB̄e4̂),

(45)

with A = −√
2u3, B = −√

2u1 and θ = π . The Weyl scalar �4 transforms as [9]

�̂4 = A2�̄4 = 4�2P0(J0)

9
(u3)2 eir/2 cos3

r

2
∝ �, (46)

where u3 = −R(u̇ + 2Lẋ)/(P∂JL) from (13) (also, use the re-scaled function g(w) from (5)
to see the proportionality to �). Hence we know

A+ = �2

18C2L
u̇2 cos2

r

2
,

A× = �2

18C2L
u̇2 sin

r

2
cos

r

2
. (47)

Substituting either (36), (38) or (37), (39) for u(τ ) and r(τ ) above with (42), we find that as
long as the limit u(+∞) exists (e.g., when A1 < 0 in (36)) and r(+∞) = ±π , the amplitudes
behave like

A+ ∼ � exp

(
−4

√
�

3
τ

)
, A× ∼ � exp

(
−3

√
�

3
τ

)
(48)

as the proper time τ → +∞. This means that the gravitational waves are decaying
exponentially fast with the spacetime locally approaching the de-Sitter universe. Hence the
cosmic no-hair conjecture [10] is demonstrated with these radial geodesics. Furthermore, due
to the proportionality to �, the polarization modes A+ and A× cannot be generally separated
from the isotropic background represented by �/3 in (19), when it comes to consider their
local effects.

9. Concluding remarks

Like their non-twisting counterparts [3], the twisting spacetimes described by (1)–(4) bear a
similar local interpretation as exact transverse gravitational waves in the de-Sitter universe.
However, the essential nonzero requirement of the cosmological constant � in our radiative
solutions (wave amplitudes proportional to �; for � = 0, spacetimes becoming flat), to our
best knowledge, has not been seen in any other radiative exact solution (e.g., Kundt class
and Robinson–Trautman class). This distinctive feature of these spacetimes suggests that
the gravitational waves they represent may not be considered as being generated by usual
astronomical sources which always radiate regardless of the background � being zero or not.

3 Due to cross terms like dζdu in the metric with the current coordinate system, it is not at all clear how to show
r = ±π/2 is an actual horizon for non-radial causal geodesics. Hence we will not dwell on this issue.
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Moreover, from the linear theory of gravitational waves with cosmological constant, one can
indeed identify extra freedom in the higher-order terms of approximate solutions caused by
the � parameter [11], which is consistent with our observation from the exact theory. In fact,
according to [11], this extra freedom in the wave solutions has been described as being a
‘coupling to matter sources with a strength proportional to the cosmological constant itself’,
though the actual physics behind this ad hoc coupling is quite unknown. Altogether, both
theories suggest a quite different role that the cosmological constant (or perhaps, dark energy)
may play in the process of gravitational radiations, other than simply the ‘inactive’ de-Sitter
background as it is generally thought of. Since in the inflationary epoch, the effect of� on the
cosmology was much greater than at present, we expect that these radiative solutions might
be of more relevance to primordial gravitational waves from the Big Bang.
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[3] Bičák J and Podolský J 1999Gravitationalwaves in vacuum spacetimeswith cosmological constant: II. Deviation
of geodesics and interpretation of nontwisting type N solutions J. Math. Phys. 40 4506–17
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