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Abstract
Based on the CR formalism of algebraically special spacetimes by Hill,
Lewandowski and Nurowski, we derive a nonlinear system of two real
ODEs, of which the general solution determines a twisting type II (or more
special) vacuum spacetime with two Killing vectors (commuting or not) and
at most seven real parameters in addition to the cosmological constant �.
To demonstrate a broad range of interesting spacetimes that these ODEs
can capture, special solutions of various Petrov types are presented and
described as they appear in this approach. They include Kerr-NUT, Kerr
and Debney/Demiański’s type II, Lun’s types II and III (subclasses of Held–
Robinson), MacCallum and Siklos’ type III (� < 0) and the type N solutions
(� �= 0) we found in an earlier paper, along with a new class of type II solutions
as a nontrivial limit of Kerr and Debney’s type II solutions. Also, we discuss a
situation in which the two ODEs can be reduced to one. However, constructing
the general solution still remains an open problem.

PACS numbers: 04.20.Jb, 02.40.Tt, 02.30.Hq

1. Introduction

All algebraically special Einstein spaces—vacuum but possibly with a non-zero cosmological
constant �—possess a repeated principal null direction, which generates a foliation of the
spacetime by a three-parameter congruence of shearfree and null geodesics [1, 2]. This
three-dimensional parameter space can be identified with a three-dimensional real manifold
described by the theory of CR structures with one complex and one real coordinate. CR
structures were first introduced by Poincaré and extensively studied by Cartan [3, 4]. Good
sources of background on the relationship between spacetimes and CR structures can be found,
for instance, in the thesis of Nurowski [5]. Recently, Hill et al [6] generalized earlier work
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of [7, 5] to provide a new formulation of twisting algebraically special spacetimes with a
cosmological constant. It allows a classification of algebraically special spacetimes according
to Cartan’s classification of three-dimensional CR structures.

There is indeed a method to determine the equivalence of two solutions of Einstein’s
equations without having to construct explicit coordinate transformations that map one into
the other, the idea of which was originated in the work of Cartan and pushed forward by
Brans [8], Karlhede [9] and Skea [10, 11]. Cartan also created a method for determining the
equivalence of two CR manifolds, which is much simpler than the method mentioned above
for four-dimensional manifolds. Because of the correspondence between the two, it allows
a considerably simpler approach to determine the equivalence of two twisting algebraically
special spacetimes, or, more usefully in this paper, the lack of such an equivalence, thereby
guaranteeing that two solutions are distinct. In addition to this important reason for using
CR structures, it also provides a different formulation of Einstein’s equations, which exhibits
certain invariant features that are desirable for calculations, as compared to other formulations.
It is favorable to have this invariant approach to study the decomposition of Einstein’s equations
into some manageable form, and to have one that prefers non-zero values of the twist, since
only a very limited number of such spacetimes with non-zero twists, in Petrov types II, III,
and N, are actually available for study.

In the theory of exact solutions, Einstein’s equations are usually solved under the
assumptions of the existence of some symmetry group [12], i.e., Killing vectors. For instance,
Kerr and Debney [13] have determined all diverging (twisting or not) algebraically special
vacuums (� = 0) with three or more Killing vectors. The case with two Killing vectors,
however, is still not solved completely. We intend to address this problem in this paper with
the extension to include a non-zero cosmological constant.

Building on the work of Hill et al [6], we first present, in section 2, the twisting type
II vacuum metric formulated according to CR geometry, together with our calculated Weyl
scalars. Then in section 3, we establish the transformation from the CR formalism to the
canonical frame that is widely used, e.g., in [12]. In section 4, we generalize the ansatz that
was found for twisting typeN solutions in [14], thereby reducing the field equations to only two
coupled real ODEs for two unknown functions of a single variable. From section 5–8, we show,
by using the transformation in section 3, that a large variety of previously known, twisting
solutions of types II, III, as well as D ([12], chapters 29 and 38), with at least two Killing
vectors, correspond to the special solutions of these ODEs. Moreover, we study a special case
when the number of ODEs can be reduced to one, which generalizes our previous results on
type N. Although the general solution is yet to be found, we believe that this extension of
ODEs is quite worthwhile and should provide a start for future steps forward in the study of
twisting exact solutions.

2. CR structures and the field equations

A CR structure1 is a three-dimensional real manifold M equipped with an equivalence class
of pairs of 1-forms λ (real) and μ (complex) satisfying

λ ∧ μ ∧ μ̄ �= 0.

Another pair (λ′, μ′) is equivalent to (λ, μ), iff there exist functions f �= 0 (real) and h �= 0,
g (complex) on M such that

λ′ = f λ, μ′ = hμ + gλ, μ̄′ = h̄μ̄ + ḡλ.

1 All our considerations are local.
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For our purpose, we further assume [6, 3]

μ = dζ , μ̄ = dζ̄ , (1)

dλ = iμ ∧ μ̄ + (cμ + c̄μ̄) ∧ λ, (2)

where ζ and c are some complex-valued functions onM. Taking the closure of (2), we obtain
a reality condition on the derivatives of c:

∂ c̄ = ∂̄c, (3)

The same function c also appears in the commutation relations of the dual basis of vector
fields:

(∂0, ∂, ∂̄ ) dual to (λ, μ, μ̄),

[∂, ∂̄] = −i∂0, [∂0, ∂] = c∂0, [∂0, ∂̄] = c̄∂0. (4)

There is then the following theorem telling us how to construct an algebraically special
spacetime on the basis of M [6, 15].

Theorem 1. The CR structure (1)–(4) on M can be lifted to a spacetime M = M ×R equipped
with the metric

g = 2(θ1θ2 + θ3θ4), θ1 = P μ = θ̄2,

θ3 = P λ, θ4 = P(dr + Wμ + W̄μ̄ + Hλ), (5)

where P �= 0, H (real) and W (complex) are arbitrary functions on M. The spacetime (5)
admits a geodesic, shearfree and twisting null congruence along the vector field ∂r (r ∈ R),
of which the three-parameter leaf spaces (r = const.) have the same CR structure as M. It
further satisfies the Einstein equation Ric(g) = �g, iff the metric components can be written
as

P = p

cos( r
2 )

, W = i a (e−ir + 1), (6)

H = n

p4
e2ir + n̄

p4
e−2ir + q eir + q̄ e−ir + h, (7)

a = c + 2∂ log p, (8)

q = 3n + n̄

p4
+ 2

3
�p2 + 2∂ p ∂̄ p − p (∂∂̄ p + ∂̄∂ p)

2p2
− i

2
∂0 log p − ∂̄c, (9)

h = 3
n + n̄

p4
+ 2�p2 + 2∂ p ∂̄ p − p (∂∂̄ p + ∂̄∂ p)

p2
− 2∂̄c, (10)

where c, n (complex) and p (real), all functions on M (independent of r), satisfy the following
set of equations:

∂ c̄ = ∂̄c, (11)[
∂∂̄ + ∂̄∂ + c̄∂ + c∂̄ + 1

2
cc̄ + 3

4

(
∂ c̄ + ∂̄c

)]
p = n + n̄

p3
+ 2

3
�p3, (12)

∂n + 3c n = 0, (13)

R33 = 0. (14)
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Here, the Ricci tensor component R33 as well as the Weyl scalars �2, �3 and �4 are given by

R33 =
{
8

p4
(∂ + 2c)[p2(∂ Ī − 2�(2∂̄ log p + c̄)p2)]

+16
p

�

[(
∂∂̄ + ∂̄∂ + c̄∂ + c∂̄ + 1

2
cc̄ + 3

4
(∂ c̄ + ∂̄c)

)
p − n + n̄

p3
− 2

3
�p3

]

+16i
p3

∂0

(
n

p3

) }
cos4

( r

2

)
, (15)

�2 = n

2p6
(eir + 1)3, (16)

�3 =
{
2i

p2
[∂ Ī − 2�(2∂̄ log p + c̄)p2]

+ 6i(2∂̄ log p + c̄)
n

p6
(e2ir − 1) − 4i∂̄

(
n

p6

)
(eir + 1)

}
eir/2 cos3

( r

2

)
, (17)

�4 = 2e−ir/2 cos3
( r

2

) {
−(2∂̄ log p + c̄)[∂ Ī − 2�(2∂̄ log p + c̄)p2]

e2ir − 1
p2

+ (∂̄ + 2c̄)[∂ Ī − 2�(2∂̄ log p + c̄)p2]
eir + 1

p2
+ i

p2
∂0 Ī

+2
3
�[(∂̄ + c̄)(2∂̄ log p + c̄) + 2(2∂̄ log p + c̄)2]− 3(2∂̄ log p + c̄)2

n

p6
e4ir

+
[
(∂̄ − 2∂̄ log p)(2∂̄ log p + c̄)

n

p6
+ 3(2∂̄ log p + c̄)∂̄

(
n

p6

)]
e3ir

+
[
3(2∂̄2 log p − 16(∂̄ log p)2 + 2c̄∂̄ log p + c̄2)

n

p6

+ (16∂̄ log p + c̄)∂̄n − ∂̄2n

p6

]
e2ir

+
[
3(2∂̄2 log p − 8(∂̄ log p)2 + 8c̄∂̄ log p − ∂̄ c̄ − c̄2)

n

p6

+7(2∂̄ log p − c̄)∂̄n − 2∂̄2n
p6

]
eir

+2(∂̄2 log p − 2(∂̄ log p)2 + 5c̄∂̄ log p − ∂̄ c̄ − 3c̄2) n

p6

+ (4∂̄ log p − 5c̄)∂̄n − ∂̄2n

p6

}
,

with the function I defined by

I = ∂(∂ log p + c) + (∂ log p + c)2.

Following the same procedure as [6], which uses Cartan’s structure equations to calculate
the curvature tensor, we present our calculated R33, �3 and �4 above with non-zero � and
n, as a complement to [6]. Moreover, to facilitate future calculations, we have arranged the
expression of R33 so that its second square bracket can be immediately removed by the field

4
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equation (12), whereas the terms ∂ Ī − 2�(2∂̄ log p + c̄)p2 are made prominent as they also
appear in �3 and �4.

To solve the field equations (11)–(14) in practice, one needs to introduce a real coordinate
system (x, y, u) on M such that

ζ = x + iy, ∂ζ = 1
2 (∂x − i∂y),

∂ = ∂ζ − L∂u, ∂0 = i(∂̄L − ∂L̄)∂u,
λ = du + Ldζ + L̄dζ̄

i(∂̄L − ∂L̄)
, (18)

with L = L(ζ , ζ̄ , u) being a complex-valued function [16] satisfying

∂̄L − ∂L̄ �= 0, (19)

which is needed for a non-zero twist (see (27)). In addition, L relates to the function c by

c = −∂ ln(∂̄L − ∂L̄) − ∂uL, (20)

as imposed by the commutation relations (4). Hence generally, the system (11)–(14) is in fact
PDEs for the unknown functions L, n and p of the coordinate variables (ζ , ζ̄ , u).

For other possible coordinate choices, the metric (1)–(20) admits the following coordinate
freedom ([17], see section 2.6):

r′ = r, ζ ′ = f (ζ ), u′ = F(ζ , ζ̄ , u), ∂uF �= 0, (21)

with f (ζ ) holomorphic and F a real-valued function, which generates the transformation laws

μ′ = f ′μ, λ′ = f ′ f̄ ′λ, f ′ ≡ d f /dζ , (22)

∂ ′ = 1

f ′ ∂, ∂ ′
0 = 1

f ′ f̄ ′ ∂0, [∂ ′, ∂̄ ′] = −i∂ ′
0, [∂ ′

0, ∂
′] = c′∂ ′

0, (23)

c′ = 1

f ′ c + f ′′

( f ′)2
, p′ = 1

| f ′| p, n′ = 1

( f ′ f̄ ′)3
n, (24)

L′ = − 1

f ′ (∂ζ F − L∂uF ) = − 1

f ′ ∂F, ∂̄ ′L′ − ∂ ′L̄′ = ∂uF

f ′ f̄ ′ (∂̄L − ∂L̄). (25)

Note that the function F does not appear above on the level of c, p and n, as well as ∂ and
∂0, the fact of which indicates an invariant feature of the CR formalism. As expected, the field
equations for the new p′, c′ and n′ take on the same form of (11)–(14) with (∂0, ∂, ∂̄ ) simply
replaced by (∂ ′

0, ∂
′, ∂̄ ′). These transformation properties will be used to simplify our metrics.

3. Transformations to the canonical frame

Given the algebraically special twisting metric form (1)–(20) formulated according to CR
geometry, it is important to know how it is related to other pre-existing formalisms that have
been extensively studied in the past. Here, we quote from [12, p 439–41] a most commonly
used one by Kerr, Debney et al [18–20]. For simplicity, we only consider � = 0 and follow
closely the notation of [12] with sub- or superscript s added to avoid confusion.

Theorem 2. A spacetime admits a geodesic, shearfree and twisting null congruence along the
vector field ∂rs and satisfies the Einstein equation Ric(g) = 0, iff the metric can be written as

g = 2(ω1ω2 − ω3ω4), ω1 = − dζ

Psρ̄s
= ω̄2,

ω3 = du + Ldζ + L̄dζ̄ , ω4 = drs + Wsdζ + W̄sdζ̄ + Hsω
3, (26)

5
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with metric components

ρ−1
s = −(rs + i
s),

2i
s

P2s
= ∂̄L − ∂L̄ �= 0,

Ws = ρ−1
s ∂uL + i∂
s, ∂ = ∂ζ − L∂u,

Hs = 1

2
Ks − rs∂u logPs − msrs + Ms


r2s + 
2
,

Ks = 2P2s Re[∂(∂̄ logPs − ∂uL̄)] (27)

such that the functions ms, Ms, Ps (real) and L (complex), all only dependent on the coordinates
(ζ , ζ̄ , u), satisfy a system of PDEs:

P−3
s Ms = Im ∂∂∂̄∂̄Vs, Ps = ∂uVs, (28)

∂(ms + iMs) = 3(ms + iMs)∂uL, (29)

∂u[P
−3
s (ms + iMs)] = Ps[∂ + 2(∂ logPs − ∂uL)]∂Is, (30)

where the function Is is defined by

Is = ∂̄ (∂̄ logPs − ∂uL̄) + (∂̄ logPs − ∂uL̄)2 = P−1
s ∂u∂̄ ∂̄Vs. (31)

Additionally, the Weyl scalar �s
2 is given by

�s
2 = (ms + iMs)ρ

3
s .

In this metric form, the coordinates (ζ , ζ̄ , u) and the function L have been chosen identically
with those introduced in (18); hence, each is not given a sub- or superscript s. Taking � = 0
and by a tedious but straightforward calculation, one can show that the metrics (26)–(31) and
(1)–(20) are equivalent to each other by the transformation [17]

Ps = 2p

i(∂̄L − ∂L̄)
, (32)

rs = − 2p2

i(∂̄L − ∂L̄)
tan

( r

2

)
, |r| < π, (33)

ms = 16(n − n̄)

(∂̄L − ∂L̄)3
, Ms = 16(n + n̄)

i(∂̄L − ∂L̄)3
, (34)

with the inverse

p = i

2
(∂̄L − ∂L̄)Ps, (35)

r = 2 arctan

(
− 2

i(∂̄L − ∂L̄)P2s
rs

)
, (36)

n = 1
32 (ms + iMs)(∂̄L − ∂L̄)3. (37)

In particular, the field equation (28) can be transformed into (12) with � = 0, despite their
drastically different appearances. Also, one obtains Is = Ī when substituting (32) into the
definition (31). For more details about these transformations, one may see section 2.6 of [17].
The relations (35) and (37) together with (20) will be used later to translate the known solutions
of the canonical field equations (28)–(30) to the solutions of (11)–(14).

6
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4. Reductions to ODEs

Now we go back to the metric (1)–(20). Following the same idea as [14] for solving the
field equations, we assume that the unknowns p, c and n have no u-dependence, i.e.,
∂0p = ∂0c = ∂0n = 0. This assumption avoids the involvement of the function L inside
the operator ∂ since now we have, e.g., ∂ p = ∂ζ p. Therefore, the system (11)–(14) becomes
effectively PDEs for the unknowns c, p and n instead of L, p and n. Once c = c(ζ , ζ̄ ) is solved,
one may further determine a function Lwithout u-dependence from (20) (see (49)). Altogether,
this means that the resulting spacetime shall possess a Killing vector in the u-direction, which
is, in fact, an assumption widely used in many research articles on algebraically special
solutions (see, e.g., [12, chapter 29] ).

We apply the assumption and rewrite the system (11)–(14) (likewise for �3 and �4) as

∂ζ c̄ = ∂ζ̄ c, (38)

2∂ζ ∂ζ̄ p + c̄∂ζ p + c∂ζ̄ p + 1

2
cc̄p + 3

2
(∂ζ c̄)p = n + n̄

p3
+ 2

3
�p3, (39)

∂ζ n + 3c n = 0, (40)

(∂ζ + 2c)[p2∂ζ Ī − 2�(2∂ζ̄ log p + c̄)p4] = 0, (41)

where in the last equation (R33 = 0) we have used (12) to simplify the expression of R33, and
the function I is given by

I = ∂ζ (∂ζ log p + c) + (∂ζ log p + c)2.

This is the set of PDEs we aim to solve for the unknowns p(ζ , ζ̄ ), c(ζ , ζ̄ ) and n(ζ , ζ̄ ).
Generalizing the ansatz [14, 17] we found from the classical symmetries [21] of the type

N case of (38)–(41) with n = 0, we assume the following forms for the unknowns:

p(ζ , ζ̄ ) = F1(z)√
AĀ

, c(ζ , ζ̄ ) = ∂ζ A + iF2(z) + C1
A

, n(ζ , ζ̄ ) = F3(z) + iF4(z)
(AĀ)3

(42)

with a new real variable

z = −i
(∫

1

A
dζ −

∫
1

Ā
dζ̄

)
= Im

∫
2

A
dζ .

Here, the function A = A(ζ ) is an arbitrary function of ζ that is sufficiently smooth, and
the constant C1 and the undetermined functions F1−4(z) are all real-valued. The constraint
equation (38) has been taken into account in the form of c(ζ , ζ̄ ) so that it is satisfied.

Inserting the ansatz (42) into (39)–(41), we obtain a remarkable reduction to a system of
four compatible real ODEs for F1−4(z) only, with all other dependence on A, Ā �= 0 factored
out:

0 = −F ′′
1 + F2F

′
1 + 1

3
�F31 + 1

4

(
3F ′
2 − F22 − C21

)
F1 + F3

F31
, (43)

0 = F ′
3 − 3(F2F3 + C1F4), (44)

0 = F ′
4 + 3(C1F3 − F2F4), (45)

0 = (H ′ − 2F2H)′ − 2F2(H ′ − 2F2H) + 4C21H, (46)

where the function H(z) is defined by

H = F ′′
1 F1 − (F ′

1 )
2 − �F41 − F ′

2F
2
1 .

7
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The two inner equations are derived from the real and imaginary parts of (40), respectively.
Note that they are linear in F3 and F4. Thus, if F2 is given, one can solve them by

F3 = exp

(
3
∫

F2dz

)
[B1 sin(3C1z) − B2 cos(3C1z)],

F4 = exp

(
3
∫

F2dz

)
[B2 sin(3C1z) + B1 cos(3C1z)], (47)

where B1,2 are real constants. With F3 expressed in terms of F2, we are left with only two
nonlinear equations for F1 and F2:

0 = −F ′′
1 + F2F

′
1 + 1

3
�F31 + 1

4

(
3F ′
2 − F22 − C21

)
F1

+ exp
(
3
∫

F2dz
)

F31
[B1 sin(3C1z) − B2 cos(3C1z)],

0 = (H ′ − 2F2H)′ − 2F2(H ′ − 2F2H) + 4C21H, (48)

which can be easily converted to a set of ODEs if one introduces, e.g.,F2 = K′(z) to remove the
integral in the first equation. The system (48) with (47), or alternatively (43)–(46), constitutes
the main result of this paper.

Before moving on to solve (43)–(46) in the following few sections, we should make
a few general remarks concerning the metric (1)–(20) equipped with the ansatz (42). First,
despite the appearance of a free function A(ζ ) �= 0 in the ansatz, its different choices do
not generate new metrics. In fact, using the coordinate change ζ ′ = ∫

2
A(ζ )

dζ permitted by
(21) and, accordingly, the transformation law (24) with f ′ = 2/A(ζ ), one can always replace
a function A by a constant A = 2. This is also consistent with the fact that the local CR
structure determined by the function c in (42) is independent of the choice of A(ζ ) [14].
Hence for simplicity, we can just set A(ζ ) = Ā(ζ̄ ) = 2 without loss of generality, and hence
z = Imζ = y. With this choice of A, the function L and the 1-form λ can be determined from
(20) and (18) as

L = −e−C1x
∫
exp

(∫
F2dz

)
dz, (49)

λ = eC1xdu − 2 [∫
exp

(∫
F2dz

)
dz

]
dx

exp
(∫

F2dz
) . (50)

Once again, though there exist other Ls satisfying (20), one can always use the remaining
coordinate freedom u′ = F(ζ , ζ̄ , u) (see (21)) to convert them to the u-independent real
expression (49) [14]. Given such L and λ, the class of metrics determined by (42)–(46) admits
at least two Killing vectors

X1 = ∂u, X2 = ∂x − C1u ∂u, (51)

with the commutation relation

[X1, X2] = −C1X1.

These vectors, verifiable by direct calculation, are both inherited from the symmetries of the
underlying CR structures [22, 17].

5. Type D solutions: Kerr-NUT

All type D vacuum solutions, twisting or not, are known [23, 24], which include perhaps
the most famous algebraically special solutions such as Kerr’s rotating black-hole solution.

8
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Hence, it is worthwhile to consider whether our equations (43)–(46) can capture some of these
physically important solutions. But first we should comment that the CR formalism (1)–(20)
used here is constructed on just one single shearfree null congruence aligned with a multiple
principal null direction, which is unique in type II, III and N spacetimes. However, a type
D spacetime possesses two such congruences, each along one of the two doubly degenerate
principal null directions, and consequently one cannot treat them at the same time in the CR
formalism. This suggests that the CR formalismmay not provide themost convenient approach
for finding type D solutions, as compared to other approaches that are specially designed to
make use of both congruences.

A spacetime is of type D iff it satisfies the conditions

3�3�4 − 2�2
2 = 0, �2 �= 0. (52)

This equality with the ansatz (42) applied gives rise to a number of lengthy ODEs (as one may
sense by looking at the expression of�4) from the coefficients of various powers of eir required
to vanish. This fairly complicated situation (except when �3 = �4 = 0, see Appendix A)
needs a specialized paper to elaborate; hence, it is not further discussed here (also because
there is no new type D solution to be found). Instead, by applying the results of section 3, we
will simply show that the Kerr-NUT solution can be retrieved as a special solution of (43)–(46)
through the ansatz (42).

In the canonical frame (26)–(31), the Kerr-NUT solution [12, p 453] is given by

Ps = 1+ ζ ζ̄

2
, L = − i

ζP2s
[2M + (M + a)ζ ζ̄ ],

ms = m, Ms = M, � = 0,

where m, M and a, each a real constant, are called the mass, the NUT parameter and the Kerr
parameter, respectively. Then inserting them into (35), (20) and (37), we obtain the following
solution to (38)–(41):

p = −4(M − a) + 2(M + a)ζ ζ̄

(2+ ζ ζ̄ )2
,

c = 2ζ̄ [2(M − 2a) + (M + a)ζ ζ̄ ]

[2(M − a) + (M + a)ζ ζ̄ ](2+ ζ ζ̄ )
,

n = −16i[2(M − a) + (M + a)ζ ζ̄ ]3(m + iM)

(2+ ζ ζ̄ )9
.

which, as expected, satisfies the condition (52) for type D with non-zero �3 and �4. Without
a dependence on u, these expressions can be cast into the form of our ansatz (42) by

A(ζ ) = −iζ , z = log(ζ ζ̄ ), C1 = 0,

such that

F1 = −2[2(M − a) + (M + a)ez] ez/2

(2+ ez)2
, F2 = 4(M − a) + 8aez − (M + a) e2z

[2(M − a) + (M + a)ez](2+ ez)
,

F3 = 16M[2(M − a) + (M + a)ez]3 e3z

(2+ ez)9
, F4 = −16m[2(M − a) + (M + a) ez]3e3z

(2+ ez)9
. (53)

One can verify that they are indeed a solution to (43)–(46) with� = 0. Note that the function
A(ζ ) above will still be serving as a free function, as long as F1−4 are obtained. The Kerr-NUT
solution is contained in the Demiański solution as a special case (see (68)). For other examples
of type D solutions, see Appendix B and (69) with B2 = 0.

9
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6. Type N solutions with non-zero cosmological constant

The type N solutions require

�2 = �3 = 0, �4 �= 0.

These conditions lead to the following special case of (43)–(46) with F3 = F4 = 0:

0 = −F ′′
1 + F2F

′
1 + 1

3�F31 + 1
4 (3F

′
2 − F22 − C21 )F1,

�3 ∝ H ′ − 2F2H − 2iC1H = 0, (54)

plus one inequality

�4 = − 4�

3Ā2F21

[
2F1F

′′
1 + 6(F ′

1

)2 − 10(F2 + iC1)F1F ′
1

−(
F ′
2 − 3F22 − 6iC1F2 + 3C21

)
F21

]
e−ir/2 cos3

( r

2

)
�= 0,

which imposes � �= 0 for type N. To better see that the system (54) is included in (43)–(46),
one can rewrite equation (46) as

0 = (
H ′ − 2F2H − 2iC1H

)′ − 2(F ′
2 − iC1

)
(H ′ − 2F2H − 2iC1H).

In fact, the field equation R33 = 0 can always be removed by�2 = �3 = 0 for general type N
vacuums (see (15)–(17)). Note that the second equation of (54) is complex; we have two cases
for solutions.

Case 1: H = 0,� �= 0. This simpler case has been investigated in [14] (see [17] for more
details). The equations for this case read

0 = −F ′′
1 + F2F

′
1 + 1

3�F31 + 1
4

(
3F ′
2 − F22 − C21

)
F1,

0 = H = −F ′′
1 F1 + (

F ′
1

)2 + �F41 + F ′
2F

2
1 . (55)

By introducing a real function J = J(z) and

F1 = ±
√

J′, F2 = J′′

2J′ − �J, J′ > 0, (56)

we can reduce the first equation of (55) to

J′′′ = (J′′)2

2J′ − 2�JJ′′ − 10

3
�(J′)2 − 2(�2J2 + C21

)
J′, (57)

while the second equation is automatically satisfied. Since this ODEhas no explicit dependence
on the variable z, we can immediately lower its order by the transformation J′ = P(J) > 0
such that

P′′ = − (P′ + 2�J)2

2P
− 2C21

P
− 10

3
�, � �= 0, (58)

which, in the case ofC1 = 0, can be further reduced to an Abel ODE [25] of the first kind

f ′ = 4

t

(
t + 3

2

)(
t + 1

3

)
f 3 + 5

t

(
t + 2

5

)
f 2 + 1

2t
f , (59)

by J = exp(
∫

f (t) dt)/�, P(J) = t exp(2
∫

f (t) dt)/�. Unfortunately, this Abel ODE has
not been identified as a known solvable type.

Various aspects of equation (58) were examined in [14], including the weak Painlevé
property [26] and constructions of various special and series solutions. All degenerate solutions
of type O (�4 = 0, conformally flat) were found. The only known type N solution with� �= 0

10
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in closed forms was first discovered by Leroy [27] and presented in the CR formalism by
Nurowski [15]. It corresponds to

P(J) = −1
3
�J2 − 3C21

4�
> 0, F1 = ±

√
3C1

2s sin( 12C1(z + C0))
,

F2 = − 2C1
tan

(
1
2C1(z + C0)

) , (60)

with � = −s2 < 0 and C0 a real constant (removable by a translation z + C0 → z).
Nonetheless, equation (58) does also admit type N solutions with � > 0 and two additional
parameters besides � and C1.

Case 2: H �= 0,C1 = 0, � �= 0. The system (54) becomes

0 = −F ′′
1 + F2F

′
1 + 1

3�F31 + 1
4

(
3F ′
2 − F22

)
F1,

0 = H ′ − 2F2H. (61)

Very little is known about the solutions of this system except for one of type O [17] given by

F1 = ±
√
6

2s(z + C0)
, F2 = − 2

z + C0
, H = 3

4s2(z + C0)4
, (62)

with � = −s2 < 0 and C0 a real constant. Particularly, this solution has the hyperquadric CR
structure (the most symmetrical one) [28].

7. Type III solutions

Similar to the case of type N, the equations for type III (�2 = 0, �3 �= 0; F3 = F4 = 0) are
given by

0 = −F ′′
1 + F2F

′
1 + 1

3�F31 + 1
4

(
3F ′
2 − F22 − C21

)
F1,

0 = (H ′ − 2F2H)′ − 2F2(H ′ − 2F2H) + 4C21H, (63)

which are subject to

�3 ∝ H ′ − 2F2H − 2iC1H �= 0.

Using the first equation of (63), we can lower the order of the second ODE, such that the
resulting set of equations contains derivatives up to the second order in F1 and the third order
in F2. Hence, the general solution carries another five real parameters in addition to � and
C1. Considering that one of these parameters is simply the translation z → z + C0 (no explicit
dependence on z in (43)–(46)), and thus removable, one can see that the final type III metric
determined by (63) has at most six parameters including � and C1 (see the conclusions).

Two classes of twisting type III vacuum solutions are known, respectively for � = 0 and
� < 0. The one with � = 0 is due to Held [29] and Robinson [30], which generalizes the
non-twisting Robinsion–Trautman type III vacuum solution and generally admits only one
Killing vector ∂u. The subclasses with two Killing vectors (commuting or not) were found
by Lun [31]. It can be shown that Lun’s case I type III metric corresponds to the following
solution of (63):

� = 0, C1 = 0,

F1 =
√
3

2z3
(E1z

2+√
13/2 + E2z

2−√
13/2),

F2 = − (5− √
13)E1z2+

√
13/2 + (5+ √

13)E2z2−
√
13/2

2z(E1z2+
√
13/2 + E2z2−

√
13/2)

. (64)

11
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Likewise, his case II type III metric puts forth a second solution of (63):

� = 0, C1 = 1

4
,

F1 =
√
3

4 cos( z
2 )

(E1G + E2G
−1),

F2 =
√
13 (E1G − E2G−1)

4 cos( z
2 ) (E1G + E2G−1)

+ 5

4
tan( z

2 ),

G(z) =
(
sin( z

2 ) + 1
cos( z

2 )

)√
13/2

. (65)

In both cases, E1,2 are real constants. More details will be given in the following section as
degenerate cases of the related type II solutions (67) and (70).

The other known type III solution requires � < 0 and is due to MacCallum and Siklos
[32] (see also [12, p 201] ). As a solution of (63), it is given by

F1 = ±
√
39

4s(z + C0)
, F2 = − 5

2(z + C0)
, C1 = 0, (66)

with � = −s2, a real constant C0 and

�3 ∝ H ′ − 2F2H = − 585

256�(z + C0)5
.

8. Type II solutions

Based on the structure of (43)–(46), we can consider the type II solution (�2 �= 0,
3�2�4 − 2�2

3 �= 0) according to three different cases.
Case 1: F3 = 0, F4 �= 0 ⇒ C1 = 0. Equations (43)–(46) are reduced to

0 = −F ′′
1 + F2F

′
1 + 1

3�F31 + 1
4

(
3F ′
2 − F22

)
F1,

0 = (H ′ − 2F2H)′ − 2F2(H ′ − 2F2H),

F4 = B1 exp

(
3
∫

F2dz

)
,

with B1 �= 0 being a real constant. Since the first two equations above are identical to (63)
withC1 = 0 (also see (55) and (61)), one can generate these kinds of type II solutions directly
from existing type N and III solutions, i.e., (60) withC1 = 0, (64) and (66), which works as if
one is adding a ‘mass source’ to them. A similar idea can be found in [12, p 447]. In addition,
for type D solutions with F3 = 0 and C1 = 0, see Appendix B.

Case 2: F3 �= 0, C1 = 0. The associated equations are given by

0 = −F ′′
1 + F2F

′
1 + 1

3�F31 + 1
4 (3F

′
2 − F22 )F1 + F3

F31
,

0 = (H ′ − 2F2H)′ − 2F2(H ′ − 2F2H),

F2 = F ′
3

3F3
, F4 = B1 exp

(
3
∫

F2dz

)
= B1F3,

with B1 a real constant. Certainly, one may use the third equation above to turn the first two
into ODEs for F1 and F3 only.

12
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Lun’s case I solution [31, 33] with four parameters can be shown to belong to this case.
It reads, in the canonical frame (26)–(31),

Ps =
√
2
3 (ζ + ζ̄ )3/2, ζ = x + iy,

L = − 3i
16

x−3/2
[
(3+

√
13)E1x

√
13/2 + (3−

√
13)E2x

−√
13/2

]
+ 3iM

32x3
,

ms = m, Ms = M, � = 0,

or, in the CR formalism as a solution of (38)–(41) or (43)–(46),

A(ζ ) = −2i, z = x, C1 = 0,

p = 1

2
F1(z) =

√
3

16z3
G(z),

c = − 1
2F2(z)

= (zG)−1
[
(5−

√
13)E1z

2+√
13/2 + (5+

√
13)E2z

2−√
13/2 + 6Mz1/2

]
,

n = 1

64
(F3(z) + iF4(z)) = 27 i

220z27/2
G3(m + iM),

G(z) = 4
(

E1z
2+√

13/2 + E2z
2−√

13/2
)

+ 3Mz1/2, (67)

with m, M and E1,2 being real constants. When m = M = 0, the solution degenerates to the
type III solution (64).

The Kerr and Debney/Demiański’s four-parameter solution [12, p 449] also falls under
this case. It is given by

Ps = 1+ ζ ζ̄

2
, L = −iP2s

[
2M/ζ + (M + a)ζ̄ + 1

4
bζ̄ log(ζ̄ /

√
2)

]
,

ms = m, Ms = M, � = 0,

and corresponds to

A(ζ ) = −iζ , z = log(ζ ζ̄ ), C1 = 0,

F1 = − [16(M − a) + 8(M + a) ez + bG1] ez/2

4(2+ ez)2
,

F2 = 8[4(M − a) + 8a ez − (M + a) e2z]+ bG2
8[2(M − a) + (M + a) ez](2+ ez) + bG1(2+ ez)

,

F3 = M[16(M − a) + 8(M + a) ez + bG1]3 e3z

32(2+ ez)9
,

F4 = −m[16(M − a) + 8(M + a) ez + bG1]3 e3z

32(2+ ez)9
,

G1(z) = (2+ ln 2− z)(2− ez) − 8,
G2(z) = (3+ ln 2− z)(4+ e2z) − 8(ln 2− z) ez − 24, (68)

which is a solution of (43)–(46). Here m, M, a and b are four real parameters. Clearly, the
Kerr-NUT solution (53) is a special case with b = 0.

Besides these known solutions, we have obtained an additional one (see the derivation in
case 3 below) which turns out to be a limiting case (C1 → 0) of the solution (72):

C1 = 0, � = 0,

F1 = −2B2z2 + C2z + C3, F2 = 4B2z − C2
2B2z2 − C2z − C3

,

F3 = −B2F
3
1 , F4 = B1F

3
1 . (69)

13
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Here, C2,3 and B1,2 are real constants. Its comparisons with Lun’s and Demiański’s solutions
will be discussed in Appendix C. Particularly, when B2 = 0, the solution becomes type D.

Case 3: F3 �= 0, C1 �= 0 ⇒ F4 �= 0. This corresponds to the most general case
for solutions. As one may check, Lun’s case II four-parameter solution [31, 33], which is
given by

Ps =
√
2
3 (ζ + ζ̄ )3/2, ζ = x + iy, w = y/x,

L = x−3/2
{
1

6

[
E1(w + (w2 + 1)1/2)

√
13/2

(
w −

√
13

2
(w2 + 1)1/2

)

+ E2(w + (w2 + 1)1/2)−
√
13/2

(
w +

√
13

2
(w2 + 1)1/2

) ]

+ 3
160 [(m + iM)(1+ iw)3/2(2− 3iw) + (m − iM)(1− iw)3/2(2+ 3iw)]

}
,

ms − iMs = (m + iM)x3/2(1+ iw)3/2, � = 0,

can be converted to a solution of (43)–(46):

A(ζ ) = ζ , ζ = |ζ | eiz/2, C1 = 1

4
,

F1 =
√
3(E1G + E2G−1)
4 cos( z

2 )
+ 3

√
3 sin( z

2 )
(
M sin( z

4 ) − m cos( z
4 )

)
16 cos5/2( z

2 )
,

F2 = 4 cos3/2( z
2 )[5 sin(

z
2 )(E1G + E2G−1) + √

13(E1G − E2G−1)]− 3(MG1 − mG2)

16 cos5/2( z
2 )(E1G + E2G−1) + 6 sin(z) (

M sin( z
4 ) − m cos( z

4 )
) ,

F3 = 3
√
3F31

(
M cos( 3z4 ) + m sin( 3z4 )

)
28 cos9/2( z

2 )
, F4 = 3

√
3F31

(−M sin( 3z4 ) + m cos( 3z4 )
)

28 cos9/2( z
2 )

,

G(z) =
(
sin( z

2 ) + 1
cos( z

2 )

)√
13/2

, G1(z) = 5
4 sin(

5z
4 ) − 7

4 sin(
3z
4 ) − 5 sin( z

4 ),

G2(z) = 5
4 cos(

5z
4 ) + 7

4 cos(
3z
4 ) − 5 cos( z

4 ), (70)

with E1,2, M and m being real constants. In the case of M = m = 0, the solution reduces to
the type III solution (65).

Besides Lun’s example, we have also considered the special case of H = 0 for the system
(43)–(46), which turns out to be fully soluble when� = 0. The derivation follows closely the
type N case 1 (see (55)), and utilizes the same ansatz (56) that makes the functionH(z) vanish
(hence, (46) satisfied). More specifically, we have

F1 = ±
√

J′, F2 = J′′

2J′ − �J = F ′
1

F1
− �J, J′ > 0,

F3 = F31 exp

(
−3�

∫
Jdz

)
[B1 sin(3C1z) − B2 cos(3C1z)],

F4 = F31 exp

(
−3�

∫
Jdz

)
[B2 sin(3C1z) + B1 cos(3C1z)], (71)

with the last two equations derived from (47). Therefore when � vanishes, equation (43) can
be reduced to a linear ODE for F1(z) alone:

F ′′
1 = −C21F1 + 4[B1 sin(3C1z) − B2 cos(3C1z)], � = 0,

14
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which has the general solution

F1 = C2 cos(C1(z + C0)) − 1

2C21
[B1 sin(3C1z) − B2 cos(3C1z)], C1 �= 0, (72)

or, ifC1 vanishes (see (69)),

F1 = −2B2z2 + C3z + C4, C1 = 0, (73)

whereC0−4 and B1,2 are real constants. The conditions H = 0 and� = 0 exclude type III and
N as special cases. The solution corresponding to (72) withC1 = − 1

2 coincides with a special
case of Kerr and Debney’s type II solution [12, p 608], and hence is not new (see Appendix D
for more details). Also, by settingC0 = 0,C2 = − B2

2C21
+C4 and B1 = − 2

3C1C3, one can obtain
(73) from (72) in the limitC1 → 0, whereas the two Killing vectors (51) become commuting.
For a generally non-vanishing �, we obtain from (43) an equation for J(z):

J′′′ = (J′′)2

2J′ − 2�JJ′′ − 10

3
�(J′)2 − 2(�2J2 + C21

)
J′

+ 8(J′)1/2 exp
(

−3�
∫

Jdz

)
[B1 sin(3C1z) − B2 cos(3C1z)], (74)

which generalizes equation (57) for type II. By introducing J = K′ (or −3�J = K′/K, etc.),
one can transform this equation to a fourth-order ODE for K(z). However, we do not have any
type II solution with � �= 0 for this ODE.

9. Conclusions

With the real coordinates {x, z, u, r} and A(ζ ) = 2 in the ansatz (42), we present here our new
class of vacuum twisting type II metrics admitting two Killing vectors:

g = F21 (z)

2 cos2( r
2 )
[dζdζ̄ + λ(dr + Wdζ + W̄dζ̄ + Hλ)],

with ζ = x + iz and

λ = eC1xdu − 2 [∫
exp

(∫
F2dz

)
dz

]
dx

exp
(∫

F2dz
) ,

W = 1

2

(
2F ′
1

F1
− F2 + iC1

)
(e−ir + 1),

H = −1
2

[(
F ′
1

F1

)′
− �F21 − F ′

2 − 2(F3(cos r + 1) + F4 sin r)

F41

]
(cos r + 1) − 1

6
�F21 cos r,

where C1 is an arbitrary real parameter and the real functions F1−4(z) satisfy

0 = −F ′′
1 + F2F

′
1 + 1

3
�F31 + 1

4

(
3F ′
2 − F22 − C21

)
F1 + F3

F31
,

0 = (H ′ − 2F2H)′ − 2F2(H ′ − 2F2H) + 4C21H,

F3 = exp

(
3
∫

F2dz

)
[B1 sin(3C1z) − B2 cos(3C1z)],

F4 = exp

(
3
∫

F2dz

)
[B2 sin(3C1z) + B1 cos(3C1z)], (75)

with the function H(z) defined by

H = F ′′
1 F1 − (

F ′
1

)2 − �F41 − F ′
2F

2
1 .
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One can determine F1,2 from the first two equations of (75), which are in fact a pair of ODEs
for F1 and K = ∫

F2dz. This allows the metric to have at most eight real parameters including
� and C1 (see discussion in section 7), and its two Killing vectors are

∂u, ∂x − C1u∂u.

Most of the previously known twisting vacuum solutions with twoKilling vectors, as presented
in [12, chapters 29 and 38], have been shown to belong to this class, the only exception being
the general case of Kerr and Debney’s type II solution (see Appendix D). Additionally, for
H = 0, the system (75) can be reduced to a single ODE (74), or even be fully integrated when
� = 0. This leads to the discovery of a limiting solution (69) (type II with two commuting
Killing vectors) of a special case of Kerr and Debney’s type II solution, which we believe has
not been discussed or published before. Despite all these special solutions with maximally four
parameters, the general solution of (75) is still quite unknown. We believe that this problem
poses a major challenge.

Altogether, we hope that this work may provide a platform for all types of twisting
algebraically special solutions to be studied in a connected and unified manner, given the
history that many of those known solutions were derived by quite different approaches or
special assumptions. For future research, this new class of metrics may be further examined to
study important issues such as the (cosmic) no-hair conjecture, the asymptotic stability of the
Kerr solution [34] and the formation of rotating black holes (see, e.g., [35, 36] and references
therein).

Appendix A. Type D solutions: �3 = �4 = 0

For simplicity, we consider type D solutions with �2 �= 0 and �3 = �4 = 0. In order to
acquire �3 = 0 with �3 depending on r, we need, at least, for the coefficient of e2ir to vanish
in (17),

0 = 2∂̄ log p + c̄, (A.1)

which, through the ansatz (42), adds two more equations to the system:

C1 = 0, F ′
1 = 1

2F2F1. (A.2)

Thus, we can simplify the original (43)–(46) to

F ′
2 = −4

3
�F21 − 4F3

F41
, (A.3)

F ′
3 = 3F2F3, (A.4)

F ′
4 = 3F2F4, (A.5)

with the last equation (46) being automatically satisfied by the equations presented above. The
system (A.2)–(A.5) can be fully solved with the general solution

F1 = C3 sec
( z + C0

C2

)
, F2 = 2

C2
tan

( z + C0
C2

)
,

F3 = −C43
(
3+ 2�C22C

2
3

)
6C22

sec6
( z + C0

C2

)
, F4 = C4 sec

6
( z + C0

C2

)
. (A.6)
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Remarkably, though we have only started with one extra condition (A.1), it is enough for the
solution (A.6) to be of type D, i.e., we have

�2 = −C43
(
3+ 2�C22C

2
3

) + 6iC22C4
12C22C

6
3

(eir + 1)3, �3 = �4 = 0.

With A(ζ ) = 2 and (A.6), the resulting metric can be written as

g = C24
2 cos2( r

2 ) cos
2( z+C0

C2
)
[dζdζ̄ + λ(dr + Hλ)],

with ζ = x + iz and

λ = cos2
(

z + C0
C2

) [
du − 2C2 tan

(
z + C0

C2

)
dx

]
,

H = − 1

cos2
( z+C0

C2

) [
cos2

( r

2

) (
cos r

C22
+ 2C4 sin r

C43

)
+ 1

6
C23�(cos 2r + 2 cos r)

]
.

One can immediately remove the parameter C0 by z + C0 → z. Besides the cosmological
constant �, the metric contains three real parameters C2,C3 and C4.

Appendix B. Type D solutions from classical symmetries

Here, we list a number of special solutions one may encounter when searching for group-
invariant solutions from classical symmetries [21] of the system (43)–(46) or its various
special cases. Incidentally, all these solutions turn out to be of type D, even though the
condition 2�2

2 = 3�3�4 is never used in their derivation. As expected for type D solutions,
they all have C1 = 0, which means that the two Killing vectors (51) are commuting. In what
follows, C2−4 are real constants.

We start with solutions with F3 = 0. For � = 0, we have

F1 = C3e
C2z, F2 = 2C2, F3 = 0, F4 = C4e

6C2z,

F1 = C2
z2

, F2 = −3
z
, F3 = 0, F4 = C3

z9
.

For � = −s2 < 0, we have ([14] and see (62))

F1 =
√
6

3sz
, F2 = − 5

3z
, F3 = 0, F4 = C2

z5
,

F1 =
√
6

2sz
, F2 = −2

z
, F3 = 0, F4 = C2

z6
.

In case of F4 = 0, they all become type O solutions of (54) or (63).
For solutions that admit non-vanishing F3 and �, we have

F1 = C2 �= 0, F2 = 0, F3 = − 1
3C

6
2�, F4 = C3,

F1 = C2
z

, F2 = −2
z
, F3 = −3C

4
2 + 2C62�
6z6

, F4 = C3
z6

,

Note that the first solution above is given by constants, which is a consequence of the
translational invariance (z → z + C0) of the system (43)–(46). Lastly for � = 0, we obtain

F1 = C3e
C2z, F2 = 4

3C2, F3 = 1
9C

4
3C

2
2e
4C2z, F4 = C4e

4C2z.

17



Class. Quantum Grav. 30 (2013) 115006 X Zhang and D Finley

Appendix C. Comparisons of type II solutions with C1 = 0

Here, we compare the three type II solutions from case 2, i.e., (67)–(69), and show that (69)
is different from the other two. Generally, to see that two twisting type II vacuum metrics are
different, i.e., not being related by a coordinate transformation, it is sufficient to show that their
CR structures along the shearfree null congruences are not equivalent [6]. This can be decided
by evaluating the six Cartan invariants [5, 14], which are the same only for two equivalent CR
structures. Among these invariants, the first one, in Cartan’s original notation, is given by

α(ζ , ζ̄ ) = −5r̄∂ζ r + r∂ζ r̄ + 8crr̄

8
√

r̄ · 8
√

(rr̄)7
,

r̄ = 1
6

(
∂ζ l + 2cl

)
, l = −∂ζ ∂ζ̄ c − c∂ζ̄ c,

which only relies on the function c = c(ζ , ζ̄ ) (hence F2(z) from the ansatz (42)). The use of
α alone will be adequate for our comparison.

For simplicity, we consider the special case of (69) with C2 = C3 = 0, i.e.,

F1 = −2B2z2, F2 = 2
z , F3 = −B2F

3
1 , F4 = B1F

3
1 .

This solution is still of type II but has a constant invariant α given by

α2 = −25
14

√
21.

Yet another case with α being constant is when B2 = 0 in (69), in which case the solution is
of type D and

α2 = −16
5

√
10.

This same quantity α calculated from Lun’s solution (67), however, is generally a function of
z and only becomes a constant when two of the three free parameters E1,2 and M vanish, i.e.,
we have

α2 =
√
15

10
for E1 = E2 = 0,

α2 =
√
2(4−

√
13) for E1 = M = 0,

α2 =
√
2(4+

√
13) for E2 = M = 0,

none of which is equal to those of (69). As for Demiański’s solution (68), one can see (using
Maple) that its invariant α is never a constant (even when b = 0 for type D; particularly for
the NUT solution with b = a = 0, α is not defined due to r̄ = 0, and the corresponding CR
structure is hyperquadric [7]) within the full range of the parameters M, a and b. Therefore,
we conclude that the solution (69) is different from (67) and (68).

Appendix D. Kerr and Debney’s type II solution

The solution by Kerr and Debney [13] (see also [12, p 608] admits two non-commuting Killing
vectors and reads

Ps = 1, L = A1ζ̄
2ζ 1+σ + A2ζ̄ ζ σ/3,

iMs − ms = 2A1(1+ σ )ζ σ , � = 0, (D.1)

with Re σ = −3 and A1,2 complex constants. The special case with σ = −3 can be captured
by the ansatz (42), and it corresponds to (E1−4 real)

18



Class. Quantum Grav. 30 (2013) 115006 X Zhang and D Finley

A(ζ ) = ζ , ζ = |ζ |eiz/2, C1 = − 1
2 ,

F1 = E3 sin( z
2 ) − E4 cos( z

2 ) + 2E1 sin( 3z2 ) − 2E2 cos( 3z2 ),

F2 = F ′
1/F1, F3 = −F31

(
E1 sin( 3z2 ) − E2 cos( 3z2 )

)
,

F4 = F31
(
E2 sin( 3z2 ) + E1 cos( 3z2 )

)
,

A1 = E1 + iE2, A2 = E3 + iE4.
Modulo some redefinition of parameters, this is the same solution as (72) and (71) with
C1 = − 1

2 . It is not clear how to make such a conversion for the general case of (D.1).
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