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We determine the (non-Abelian) algebra of generalized symmetries for the SDiff(2)Toda

equation, a pde for a single function of 3 independent variables, the solutions of which determine

self-dual, vacuum solutions of the Einstein field equations. This algebra is a realization of two

copies of the abstract algebra SDiff(2), along with an additional pair of elements that have

derivation-like properties on both of the copies. It contains as a subalgebra the doubly-infinite,

Abelian algebra, equivalent to the infinite hierarchy of higher flows found by Takasaki and Takebe.

An infinite prolongation of the jet bundle for the original pde, to include all the variables allowed

in their hierarchy, is required for the presentation of this generalization. Because these symmetries

have non-zero commutators, they generate a recursion relation, allowing the generation and

description of the entire algebra.

1. The SDiff(2)Toda Equation, and Its Generalized Symmetries

This equation has been of interest in general relativity in various contexts, as well as some
other fields of theoretical physics, for over twenty years. One derivation was given by one of us and
Charles Boyer[1] in 1982, showing that it determines all self-dual, vacuum solutions of the Einstein
field equations which admit a rotational Killing vector. (The description of that metric is given
in Appendix A.) The equation is a partial differential equation (pde) for a single function of 3
independent variables, which may be written in the form

Ω,xy +
(
eΩ

)
,ss

= 0 , (1.1)

where partial derivatives are indicated by a subscript which begins with a comma. Extensive study
during that time has uncovered various classes of solutions; however, almost all of those describe
metrics which possess additional Killing vectors as well. In particular, when the one rotational
Killing vector is part of an entire SU(2) of symmetries for the metric, sometimes referred to as a
Bianchi IX metric, this pde is reduced to a system of ordinary differential equations. This system has
been shown to be resolved via the Painlevé VI, and Painlevé III, functions[2]. Other details of the
history of the search for solutions may be seen at this reference[3]. Nonetheless, very few solutions of
general type are known, even though there has been a resurgence of interest in this problem in recent
years[4], along with a few new solutions described quite recently[5]. In particular the complete set
of generalized symmetries has not been known before; it is hoped that this characterization of them
will facilitate the search for additional classes of general solutions.

The complete algebra of generalized symmetries that we find may be described as the semi-
direct sum of the (unique) non-Abelian, 2-dimensional Lie algebra with the direct sum of two copies
of SDiff(2), i.e., S2 3+ {SDiff(2)⊕SDiff(2)}. One of the copies of SDiff(2) is built over s-
potentials of quantities made from x-derivatives, while the other is built over similar s-potentials
of quantities made from y-derivatives, so that those two independent variables play identical but
independent roles. We can describe those subalgebras via two arbitrary constants, for the solvable
algebra, and two countable sequences of arbitrary functions of 1 variable, one for each of the copies of
SDiff(2). By expanding those functions in series about the origin, we may span those copies by two
doubly-infinite sets, {Xn

p | p = 1, 2, . . . ; n = 0, 1, 2, . . . } and {Y m
q | q = 1, 2, . . . ; m = 0, 1, 2, . . . }.

If we then also span the solvable algebra by the set {S1, S0}, we have a (vector-space) basis for the
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entire algebra, and may define the details of the construction by giving the appropriate Lie products
of this entire set:

{Xn
p , Xm

q } = (qn− pm)Xn+m−1
p+q−1 , {Xn

p , Y m
q } = 0 , {Y n

p , Y m
q } = (qn− pm)Y n+m−1

p+q−1 ,

{Xn
p , S0} = (p− 1)Xn

p , {Xn
p , S1} = n(p− 1)Xn−1

p−1 ,

{Y n
p , S0} = (p− 1) Y n

p , {Y n
p , S1} = n(p− 1) Y n−1

p−1 ,
{S0, S1} = S1 .

(1.2)

As this is an algebra of generators for symmetries, the (vector-space) basis for the algebra could be
described in terms of tangent vectors on (the appropriate infinite prolongation of) the manifold used
to describe the pde, or, as is more usual, in terms of their characteristics[6,7], which are functions
defined over that manifold. In that presentation, the Lie product for the algebra elements is given
in terms of the associated Poisson-type brackets for the characteristic functions.

The Lie symmetries, i.e., those involving only the first level on the jet bundle, J1, for this equa-
tion are well-known[8], and constitute the (infinite-dimensional) subalgebra spanned by {Xn

1 , Y m
1 , S0, S1 |

n,m = 0, 1, 2, . . . }. Another important subalgebra is Abelian and is spanned by {X0
p , Y 0

q | p, q =
0, 1, 2, . . . }. It is this algebra that generates the compatible hierarchies of higher-order pde’s that
are associated with this equation via the work of Takasaki and Takebe[9]. That those entire infinite
sets of pde’s are compatible is what we would now expect, given that the associated subalgebras of
generalized symmetries are Abelian and therefore generate commuting flows on the jet bundle.

While Eq. (1.1) has been given quite a few names over the last twenty years, the name we
use was first used by Mikhail Saveliev[10] and also Takasaki and Takebe[9], emphasizing the fact
that some definition of “the symmetry algebra” for this equation ought to be SDiff(2). Saveliev’s
description[10] was built on his construction of continuum Lie algebras[11], which gave them a formal,
infinite series as an expression for the “general solution,” built over this algebra. Unfortunately, his
result seems to be too formal and not practically useful for describing solutions so as to be able to use
them in applications, but do see the more detailed descriptions of Bakas[10]. Takasaki’s approach was
considerably more practical, and indeed created the infinite hierarchy of commuting flows over the
(restricted) infinite jet bundle, built over this pde at the lowest level[9]. That hierarchy provided a
convenient structure which allowed a (functional) realization of SDiff(2), which they describe. It is
this Abelian structure, mentioned above, along with the investigations of the generalized symmetries
of the (2-dimensional) Toda lattice pde’s made by Kajiwara and Satsuma[12], (built on the earlier
work on the KdV-type hierarchy for those lattice equations of Takasaki and Ueno[13]) that led us to
investigate the generalized symmetries of this equation. In the sections below we explain in detail
how we define our jet bundles, and what is necessary to arrive at these conclusions. We trust that
this larger explication of the generalized symmetries of the equation will eventually be helpful in a
better understanding of the solution manifold for the problem.

2. The Infinite Jet Bundle and the Earlier Additional Potentials

A k-th order pde may be realized as a subvariety, Y , of a finite jet bundle, J (k)(M, N), where
M is the space of independent variables and N the space of dependent variables in the original
pde. That subvariety is most easily described, in local coordinates, by resolving the pde for some
appropriate derivative and using that equation to locally describe a surface in the jet bundle. At such
a level it is straightforward to look for the Lie symmetries as the generators of flows in the jet bundle
that remain on this surface, so that they map the solution manifold into itself. They are just vector
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fields over J (1)(M,N), prolonged to this k-th jet. However, the search for generalized symmetries
is most easily performed on the infinite prolongation of that pde, prolonging Y to Y∞ ⊂ J (∞), a
proper subset of the complete infinite jet over those variables, where arbitrarily many derivatives are
allowed, as described for instance by Vinogradov[6,7,14].

We use the obvious choices {x, y, s, Ω} for coordinates on J0 and then introduce for each integer
k ≥ 1, a notation Ω(σ), where (σ) is an unordered list of length k, of the symbols for the independent
variables, x, y, and s. For a given k the set of all of these constitutes a set of coordinates for
J (k)/J (k−1); for instance at second order these coordinates are {Ωxx,Ωxy, Ωxs, Ωyy Ωys, Ωss}, where
we do not use a comma in the subscript to simply denote variables in the various jet bundles. This
allows us to write out the total derivatives on the entire (infinite) jet:

Dxi = ∂xi +
∞∑

k=|σ|=0

Ω(σ)xi ∂Ω(σ) , xi = x, y, s , (2.1)

where Ω(σ)xi is of order k + 1 when |σ| = k. We must then restrict our consideration to the
variety defined by solutions of the pde. On this variety we use the pde to make Ωxy a function of
the other coordinates, and then use its derivatives to remove all other coordinates which contain
one or more x and also one or more y. When this is done, we will denote these functions by the
use of “overtildes” above the symbol that might otherwise have simply labelled a coordinate, on
the un-restricted bundle. We refer to these functions as “co-coordinates”; the infinite set of them
define Y∞ as a subvariety of J (∞)(M,N). Some examples would be Ω̃xy = −(Ωss + Ω2

s)e
Ω or

Ω̃xxy = Dx Ω̃xy = −(Ωxss + 2ΩsΩxs + ΩxΩss + ΩxΩ2
s)eΩ. Therefore, at level k, the coordinates on

this restricted bundle now correspond to just those k-tuples either with ` x’s and (k− `) s’s or ` y’s
and (k − `) s’s, where ` varies from 0 to k:

on Jk/Jk−1 : Ωxx...x, . . . , Ωx...xs...s, . . . , Ωss...s, . . . , Ωy...ys...s, . . . , Ωyy...y , , (2.2)

The total derivatives pull back to this variety, with the restricted total derivatives (denoted by an
overbar) including only derivatives with respect to these local coordinates:

Dx = ∂x + Ωx∂Ω + Ωxx∂Ωx + Ω̃xy∂Ωy + Ωxs∂Ωs + Ωxxx∂Ωxx + Ω̃xyy∂Ωyy

+ Ωxxs∂Ωxs + Ω̃xys∂Ωys + Ωxss∂Ωss + Ωxxxx∂Ωxxx + Ω̃xyyy∂Ωyyy

+ Ωxxxs∂Ωxxs + Ωxxss∂Ωxss + Ωxsss∂Ωsss + Ω̃xyys∂Ωyys + Ω̃xyss∂Ωyss

+ . . . = ∂x +
∞∑

(σ)

Ω(σ)x∂Ω(σ) ,

Dy = ∂y + Ωy∂Ω + Ω̃yx∂Ωx + Ωyy∂Ωy + Ωys∂Ωs + Ω̃yxx∂Ωxx + Ωyyy∂Ωyy

+ Ω̃xys∂Ωxs + Ωyys∂Ωys + Ωyss∂Ωss + . . . = ∂y +
∞∑

(σ)

Ω(σ)y∂Ω(σ) ,

Ds = ∂s + Ωs∂Ω + Ωxs∂Ωx + Ωys∂Ωy + Ωss∂Ωs + Ωxxs∂Ωxx + Ωyys∂Ωyy

+ Ωxss∂Ωxs + Ωyss∂Ωys + Ωsss∂Ωss + . . . = ∂s +
∞∑

(σ)

Ω(σ)s∂Ω(σ) ,

(2.3)

where the sum over all possible values of (σ) here only includes those symbols that label coordinates
on the restricted variety, as shown in the examples above. As well, in these sums when we consider
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the coefficients above of the form Ω(σ)x or Ω(σ)y, we must remember that if the subscript does not
include both an x and a y then it is simply a jet coordinate, while if it does include both an x and
a y, then the object appearing there is a co-coordinate, which must be replaced by its explicit value
in terms of the coordinates, as defined by some total derivative of the original pde.

On the infinite jet, characteristics, ϕ, for (generalized) symmetries are searched for as functions
on the prolongation up to order `, i.e., on Y` ⊂ J (`), for any finite integer ` ≥ 1. They must
be solutions of the following equation, which Vinogradov refers to as the universal linearization
equation[6]: {

DxDy + eΩ
[
DsDs + 2 Ωs Ds + (Ωss + Ω2

s)
]}

ϕ = 0 . (2.4)

Since the pde itself is of second order, this equation will contain coordinates on the jet that
involve derivatives of Ω no higher than 2 above the highest order, `, on which ϕ depends. In fact the
highest orders cancel completely, so that it is actually to be resolved on Y(`+1). We begin by first
asking only for the Lie symmetries, i.e., those built on J1. The general solution to that problem is
then given by the following:

ϕ = A(x)Ωx + B(y) Ωy + (αs + β)Ωs + A,x(x) + B,y(y)− 2α , (2.5)

which may therefore be parametrized by two arbitrary functions of 1 variable, and two additional
constants. For comparison with later results, it will be convenient to create a basis for this set of
(Lie) characteristics in the following way:

GX1[A] ≡ A(x) Ωx + A,x(x) ≡
+∞∑

n=−∞
AnXn

1 , where A(x) ≡
+∞∑

n=−∞
Anxn , Xn

1 ≡ GX1[xn] ,

GY1[B] = B(y) Ωy + B,y(y) ≡
+∞∑

n=−∞
BnY n

1 , where B(y) ≡
+∞∑

n=−∞
Bnyn , Y n

1 ≡ GY1[yn] ,

S0 ≡ sΩs − 2 , S1 ≡ Ωs , GS(α, β) ≡ α S0 + β S1 .

(2.6)

which have the following commutators:

{GX1[A1], GX1[A2]} = GX1[A1A
′
2 −A2A

′
1] , {GY1[B1], GY1[B2]} = GY1[B1B

′
2 −B2B

′
1] ,

or, equivalently, {Xn
1 , Xm

1 } = (m− n) Xn+m−1
1 , {Y n

1 , Y m
1 } = (m− n)Y n+m−1

1 ,

and
{GX1[A], GY1[A]} = 0 = {GX1[A], Sj} = {GY1[B], Sj} , {S0, S1} = S1 ,

or, equivalently, {Xn
1 , Y m

1 } = 0 ; {Xn
1 , Sj} = 0 = {Y m

1 , Sj} = 0 ,

(2.7)

where j takes on the values 0 and 1, and the prime indicates the derivative with respect to that
functions’s argument. Each of the arbitrary functions can be seen to generate a copy of the Virasoro
algebra (without center), namely SDiff(1). It will also be useful later to have simpler names for
those symmetries when the arbitrary function is chosen constant, and then normalized to 1, i.e., for
A(x) = 1 and also B(y) = 1:

X1 ≡ X0
1 = GX1[1] = Ωx , Y1 ≡ Y 0

1 = GY1[1] = Ωy . (2.7a)

The set of all generalized symmetries forms a Lie algebra. When those symmetries are expressed
as vector fields over J (∞), the (skew-symmetric) Lie product for the symmetries is simply the usual
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Lie bracket, or commutator bracket, for the vector fields. However, since we are describing our
symmetries in terms of their characteristics, the commutators must be determined in terms of some
Poisson-bracket style of calculation for functions. Therefore, let φ and ψ be two arbitrary character-
istics, with ~vφ the vector field associated to φ and ~vψ the field associated with ψ. Furthermore, let
the commutator of these two vector fields be given by ~vω, associated with a characteristic ω. Then
we have the following general theorem[6]:

[~vφ, ~vψ] = ~vω ⇔ ω = {φ, ψ} ≡ Zφ(ψ)−Zψ(φ) , (2.8)

where the operator Z maps an arbitrary function on the jet bundle, say α, into a linear, (first-
order) differential operator acting on (other) functions on that infinite jet. This operator is a sum of
derivatives with respect to each of the coordinates on the jet, excluding the independent variables,
with a coefficient that depends on the differential concomitants of α. Those coefficients are defined
in the following way: We associate with each of the coordinates on the (restricted) infinite jet a
product of total derivative operators which would act on the basic coordinate Ω to create that
particular coordinate; i.e., if the coordinate in question is Ω(σ), then we denote that product of total
derivative operators by D(σ). An example would be DxDsΩ = Ωxs; note that (σ) = 0 corresponds
to just the identity operator. The corresponding coefficient is then the result of letting that product
of derivative operators act on α:

Zα β ≡
(∞)∑
σ=0

[D(σ)(α)] ∂Ω(σ)
β

=
{

α ∂Ω + [Dx(α)] ∂Ωx
+ [D

2

x(α)] ∂Ωxx
+ . . . + [Dy(α)] ∂Ωy

+ [D
2

y(α)] ∂Ωyy
+ . . .

+ [Ds(α)] ∂Ωs
+ [DsDx(α)] ∂Ωsx

+ . . . + [DsDy(α)] ∂Ωsy
+ . . .

}
β ,

(2.9)

where α and β are two arbitrary functions on the (restricted) jet. Therefore, for two of our charac-
teristics, as described above in Eqs. (2.7), we would have

{Xn
1 , Xm

1 } ≡ Z
Xn

1
Xm

1 −Z
Xm

1
Xn

1 . (2.10)

As was already noted, the infinite algebra of Lie symmetries has been known for some time[8].
On the other hand, we were quite surprised when we attempted to solve this equation by allowing
ϕ to depend on coordinates on higher-level jet bundles. When this search was carefully made, we
found that there were none! This was particularly troublesome since we were certainly aware of the
(doubly-infinite) hierarchy of commuting flows discovered by Takasaki and Takebe[9], which should
certainly be related to the desired generalized symmetries. After considerable thought, we decided
that the problem might well be analogous to the behavior of the generalized symmetries for the KdV
equation, as explained by Krasil’shchik[15]. In that case, there is a very well-known, infinite hierarchy
of commuting flows, which is one-to-one related with an infinite, Abelian algebra of generalized
symmetries. Even though this algebra is Abelian, there is a recursion operator for these symmetries,
originally found by Olver[14]. Krasil’shchik and Vinogradov[15] showed that one may generalize
that Abelian algebra to a larger, no-longer-Abelian algebra by prolonging the original infinite jet
with an additional set of fibers, referred to by them as coverings of J (∞). Their prolongation is
defined by the introduction of a potential of the original dependent variable, i.e., a first integral of
that variable, and its higher derivatives, as coordinates on these fibers. This allowed them to use
the non-zero commutators in this enlarged algebra to derive the (already-known) form of Olver’s
recursion operator.
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Indeed our pde has two very obvious potentializations, based on integrals with respect to s, that
are well known in the literature:

Θ,xy = −eΘ,ss ,

Φ,xy = − (
eΦ,s

)
,s

= −Φ,ss eΦ,s , Φ = Θ,s ,

Ω,xy = − (
eΩ

)
,ss

= − [
Ω,ss + (Ω,s)2

]
eΩ , Ω = Φ,s = Θ,ss .

(2.11)

To include these potentials in our bundle, we must prolong the jet bundle with still additional
(infinite-dimensional) fibers, which may be defined as having coordinates, for the first potential,
{Φ, Φx, Φxx, . . . , Φy, Φyy, . . . }, and then also {Θ, Θx, Θxx, . . . , Θy, Θyy, . . . }, for the second
potential. Having done this, we must also prolong the total derivatives accordingly. This gives the
following result, where, again, the sum is over the coordinates already given above as appropriate,
and we denote the prolongation of the original total derivatives with a caret over the symbol:

D̂x = Dx +
(∞)∑

(σ)=0

Φ(σ)x∂Φ(σ) +
(∞)∑

(σ)=0

Θ(σ)x∂Θ(σ) , D̂y = Dy +
(∞)∑

(σ)=0

Φ(σ)y∂Φ(σ) +
(∞)∑

(σ)=0

Θ(σ)y∂Θ(σ) ,

D̂s = Ds +
(∞)∑

(σ)=0

Ω(σ)∂Φ(σ) +
(∞)∑

(σ)=0

Φ(σ)∂Θ(σ) . (2.12)

As before, those “derivatives” of Φ, or Θ, that correspond to mixed x- and y-derivatives are to be
determined by the pde’s given above, in Eqs. (2.11), while those that correspond to s-derivatives are
of course already determined in terms of derivatives of Ω.

The first new potential, Φ, already allows two new solutions to the equation for generalized
symmetries (for our original pde), one of which involves Φx and Φxx, and an arbitrary function of x,
and the other involves the same sorts of objects, involving the independent coordinate y:

GX2[A] = 2A(x) X2 + A′(x)(sΩx + 2Φx) + A′′(x) s ,

GY2[B] = 2B(y)Y2 + B′(y)(sΩy + 2Φy) + B′′(y) s ,

X2 ≡ Φxx + ΦxΩx , Y2 ≡ Φyy + ΦyΩy .

(2.13)

As these characteristics involve simple, explicit polynomials in s, as well as their dependence on
either x or y, their commutation relations will be more complicated, and more interesting. However,
in order to compute those commutation relations we must also prolong the Z operator to this (larger)
prolonged bundle. This prolongation is slightly more complicated than before, because the coefficient
of an arbitrary derivative in the linearization operator, Z, involves that particular action of total
derivative operators that generates the new coordinate from Ω. Since Ω = Φs, so that Φ is the first
s-integral of Ω, the term in the operator Zα that involves ∂Φ will need as coefficient the first s-
integral of α. For arbitrary functions α, this obviously cannot be done in any closed form; however,
we only need this operator to act on characteristics of symmetries. We will see that all of our
characteristics may in fact be written as perfect s-derivatives of other quantities, and even perfect
second s-derivatives, of yet other quantities defined on the (sufficiently-prolonged) jet bundle. The
existence of these second s-derivatives will be needed when, eventually, our characteristics involve
Θ, which is defined via Θss = Ω. For the moment we will simply introduce the operators Ds

−1

and Ds
−2

for this purpose, although we will eventually become more systematic about it. We also
understand that such an “integration” is not unique, and the form is even dependent on one’s choice
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of coordinates. This lack of uniqueness has generated some amount of discussion in the literature.
Our approach is similar to that given by Guthrie[16], who desires that all such “integrations” should
in fact be re-described so that equations containing an inverse (of a differential) operator are replaced
by a system of first order differential equations to be resolved. We begin with some such equations
here, but will use such an approach even more systematically in the next section. We use the following
differential equations to define the potentializations in that sense:

GX1[A] = AΩx + A′ = Ds

{
AΦx + A′s

}
= D

2

s

{
AΘx + 1

2A′s2
}

,

GY1[B] = BΩy + B′ = Ds

{
BΦy + B′s

}
= D

2

s

{
BΘy + 1

2B′s2
}

,

GS(α, β) = (αs + β)Ωs − 2α = Ds

{
(αs + β)Ω− αΦ− 2αs

}

= D
2

s

{
(αs + β)Φ− αΘ− αs2

}
.

GX2[A] = Ds

{
2A(Θxx + 1

2Φ2
x) + A′(sΦx + 2Θx) + 1

2A′′s2
}

,

GY2[B] = Ds

{
2B(Θyy + 1

2Φ2
y) + B′(sΦy + 2Θy) + 1

2B′′s2
}

.

(2.14)

This allows us to write down the appropriate prolongations for the form of the linearization operator
appropriate at this stage, where the “caret” indicates that this is a prolongation of the original
operator:

Ẑα = Zα +
(∞)∑
σ=0

{D̂(σ)Ds
−1

(α)}∂Φ(σ) +
(∞)∑
σ=0

{D̂(σ)Ds
−2

(α)}∂Θ(σ) . (2.15)

With this prolongation, the calculation of the commutators with our earlier Lie characteristics
is straight-forward:

{GX2[A], GX1[R]} = GX2[RA′ − 2AR′] ⇔ {Xa
2 , Xb

1} = (a− 2b)Xa+b−1
2 ,

{GX2[A], GS(α, β)} = αGX2[A] + βGX1[A′] ⇔ {Xa
2 , GS(α, β)} = αXa

2 + aβXa−1
1 ,

{GY2[B], GS(α, β)} = αGY2[B] + βGY1[B′] ⇔ {Y a
2 , GS(α, β)} = αY a

2 + aβY a−1
1 ,

{GY2[B], GY1[S]} = GY2[SB′ − 2BS′] ⇔ {Y a
2 , Y b

1 } = (a− 2b) Y a+b−1
2 ,

{GX2[A], GY1[B]} = 0 = {GX1[A], GY2[B]} ⇔ {Xn
2 , Y m

1 } = 0 = {Xn
1 , Y m

2 } ,
(2.16)

where as before, at Eqs. (2.7), we must use arbitrary functions to parametrize our set of characteristics
by defining a basis in the following way:

Xn
2 ≡ GX2[xn] , Y m

2 ≡ GY2[ym] , and X2 ≡ X0
2 = 1

2 GX2[1] , Y2 ≡ 1
2 Y 0

2 = GY2[1] , (2.17)

The extra factor of one half in the definition of the symbols X2 and Y2 differs from the similar
definition, for X1 and Y1, in Eqs. (2.7a). We will say more about this as we find more characteristics.

At this point we would like to determine the commutator of two different versions of this newer
characteristic. As the commutator of two characteristics is always again a (linear combination of)
characteristics, the fact that this commutator turns out to be non-zero provides a desirable object,
namely a “recursion operator,” that will generate higher-order characteristics from the lower ones,
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just as was the case with the Olver recursion operator, or the Krasil’shchik version of it, for the KdV
equation. The calculation of this commutator will require the use of the second potential, Θ, such
that D

2

sΘ = Ω, and the further prolongations involving it, and will give us two new characteristics:

{GX2[A], GX2[R]} = GX3[2RA′ − 2AR′] ⇔ {Xa
2 , Xb

2} = 2(a− b) Xa+b−1
3 ,

{GY2[B], GY2[S]} = GY3[2SB′ − 2BS′] ⇔ {Y a
2 , Y b

2 } = 2(a− b)Y a+b−1
3 ,

{GX2[A], GY2[B]} = 0 ⇔ {Xa
2 , Y b

2 } = 0 ,

(2.18)

where the quantities GX3[A(x)] and GY3[B(y)] are our new symmetry characteristics, one for the
“x-direction,” and one for the “y-direction.” These have the following forms:

GX3[A] = 3A(x) X3 + 2A′(x)[sX2 + 2Θxx + 3
2Φ2

x + 1
2ΘxΩx]

+ A′′(x)( 1
2s2Ωx + 2sΦx + Θx) + 1

2A′′′(x)s2 ,

X3 ≡ Θxxx + 2ΦxΦxx + Ωx(Θxx + Φ2
x) ;

GY3[B] = 3B(y)Y3 + 2B′(y)[sY2 + 2Θyy + 3
2Φ2

y + 1
2ΘyΩy]

+ B′′(y)( 1
2s2Ωy + 2sΦy + Θy) + 1

2B′′′(y)s2 ,

Y3 ≡ Θyyy + 2ΦyΦyy + Ωy(Θyy + Φ2
y) ,

(2.19)

where we have now defined the Abelian elements of this set by X3 ≡ 1
3 X0

3 and the same for Y3.

At this point we note that the recursive nature of our commutators, with these higher-order
characteristics, comes about because we are allowed to use arbitrary functions, instead of simply
constants. The restriction of these characteristics when the arbitrary functions are chosen to be just
constants, and therefore normalized to have value 1, are the quantities we have been describing as
{X1, X2, X3} and {Y1, Y2, Y3}. They are “Abelian characteristics” in the sense that they commute
one with another, i.e., their span constitutes an Abelian (sub-)algebra of the entire algebra of char-
acteristics. In fact, they are exactly that subalgebra that creates the compatible flows discovered by
Takasaki and Takebe[9]. In general the presentation of these Abelian restrictions will be simplified
by the use of a factor of 1/n, as will be described more generically below.

We also already have enough structure to compute commutators for this new characteristic with
the Lie symmetries:

{GX3[A], GX1[R]} = GX3[RA′ − 3AR′] ⇔ {Xa
3 , Xb

1} = (a− 3b)Xa+b−1
3 .

{GY3[B], GY1[S]} = GY3[SB′ − 3BS′] ⇔ {Y a
3 , Y b

1 } = (a− 3b)Y a+b−1
3 ,

and also

{ {GX3[A], GS(α, β)} = 2α GX3[A] + β GX2[A′] ,

{GY3[B], GS(α, β)} = 2α GY3[B] + β GY2[B′] .

(2.20)

However, the next plausible commutator cannot yet be computed because we do not have a structure
that allows to determine the s-integrals of GX3[A], nor even the second s-integral of GX2[A]. Since
we have generated one pair of new characteristics—depending on one pair of arbitrary functions of one
variable—for each new potential introduced into the bundle, it seems plausible to now introduce yet
more new potentials. On the other hand, while the earlier potentials were obvious as simple integrals,
the next ones are certainly no longer obvious. There are of course similar questions that occur in the
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study of the KP equation, for example, where the standard (Japanese school[17]) approach involves
an infinite hierarchy of dependent variables, all satisfying more- and more-involved equations as
one climbs upward in the hierarchy. Therefore, we used as a guide the hierarchical approach to
this equation taken by Takasaki and Takebe[9], as already mentioned. We introduce (re-normalized
versions of) their (infinite sequences of) quantities vk and v̂j . This set of potentials is defined via
(two) first-order pde’s that define the solutions as first s-integrals of differential polynomials in the
preceding potentials, and has many convenient aspects for the problem. In the next section a general
approach will be given for an infinite hierarchy of such potentials.

3. Prolongations for An Infinite Hierarchy of Potentials

The previous two integrals, of our original dependent variable, Ω = Ω(x, y, s), were very natural
in the current context. The next ones are somewhat more complicated since they involve integrands
nonlinear in the previous variables. Those first two potentials, in the previous section, allowed us
to determine two new characteristics each, but required prolongation to new fibers which required
the jet coordinates for all their x- and y-derivatives, although not of course their s-derivatives. The
newer potentials we will introduce now will come in pairs, as is required to maintain the symmetry
between the x- and y-directions, since each one will only allow a single new characteristic. However,
because of this they will only require new fiber coordinates in all derivatives with respect to a single
one of the variables x or y, with the derivatives with respect to the other variables being given by the
pair of defining (first-order) pde’s. Therefore the total number of new fiber dimensions introduced
will be the same as before, for each new characteristic.

With an aim toward a better explication of a fairly complicated process, we will initially intro-
duce just the first pair of newer potentials, and go through the process they engender to generate
their associated (pair of) new characteristics. Then we will retreat and set down a general formula-
tion that allows us to define the entire new infinite set of pairs. Therefore, we now introduce a new
pair of potentials, q2 and w2. Each of them is defined as the solution of a pair of first-order pde’s,
which are compatible because of the original pde:

q2 defined by





D̂s q2 = Θxx + 1
2Φ2

x ≡ η2 , with X2 = D̂s η2 ,

D̂y q2 = − Φx eΩ ≡ −ρ2 eΩ ,

w2 defined by





D̂s w2 = Θyy + 1
2Φ2

y ≡ ζ2 , with Y2 = D̂s ζ2 ,

D̂x w2 = − Φy eΩ ≡ −σ2 eΩ .

(3.1)

This pair of potentials allows us to re-consider the second characteristic as a second s-derivative,
namely X2 = D̂s

2
q2. In fact it also provides enough structure to write down the third characteristic

family as a first s-integral. The general forms for the second- and third-level characteristics are given
in Eqs. (2.13) and Eqs. (2.19), respectively. With these additional potentials, we may now re-write
them as s-derivatives of more primitive structures, which we do below, allowing, in each, for an
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arbitrary function A = A(x):

GX2[A] = D̂s
2
{

Aq2 + 1
2A′sΘx + 1

12A′′s3
}

,

GX3[A] = D̂s

{
A(q2x + ΘxxΦx + 1

3Φ3
x) + 2

3A′[s(Θxx + 1
2Φ2

x) + q2 + 1
2ΘxΦx]

+ 1
6A′′s(sΦx + 2Θx) + 1

18A′′′s3
}

.

(3.2)

We do not bother to write down the associated formulations for GY2[B] and GY3[B], as they are
completely identical modulo changing x’s to y’s, and also q2 to w2. On the other hand, it is of course
important that the total derivatives have been prolonged to accommodate the new fibres which may
have coordinates chosen as {q2, q2x, q2xx, . . . } and also {w2, w2y, w2yy, . . . }. As well the associated
linearization operator, Z, must be prolonged to this next level as well. However, we assume that
those prolongations have been performed at this point, but defer the explicit explanation of how it is
done until we describe the complete structure, beginning with the paragraph that contains Eqs. (3.4).
On the other hand, we do now, again, in this jet bundle with a prolongation to 4 sets of additional
fibers, have sufficient structure to calculate yet one more characteristic. That this calculation gives
a non-zero result, again shows the value of GX2[R(x)] as a generating function for new symmetry
characteristics:

{GX3[A], GX2[R]} ≡ GX4[2RA′ − 3AR′] ⇔ {Xa
3 , Xb

2} = (2a− 3b)Xa+b−1
4 ,

GX4[A] ≡ 4A(x) X4 + 3A′(x)[sX3 + 2η3 + 2
3 (ΘxX2 + 2Φxη2 + Ωxq2)] + 1

6A′′′′s3

+A′′[s2W2 + 4sη2 + 2q2 + s(ΘxΩx + Φ2
x) + 2ΘxΦx] + A′′′s(1

6s2Ωx + sΦx + Θx) ,

X4 ≡ 1
4 X0

4 = q2xx + 2ΦxΘxxx + 2ΦxxΘxx + 3Φ2
xΦxx + Ωx(q2x + 2ΦxΘxx + Φ3

x) ,

η3 ≡ q2x + ΘxxΦx + 1
3Φ3

x = Ds
−1

(X3) , η2 ≡ Θxx + 1
2Φ2

x .

(3.3)

To calculate additional commutators, and characteristics, we must define yet another pair of
potentials, q3 and w3, and perform appropriate prolongations. It is therefore, instead, time to
go ahead and describe the details of the entire sequence of (pairs of) potentials that we want to
introduce, which will allow us to introduce the entire sequence of (pairs of) characteristics for our
equation. Therefore, we define a doubly-infinite sequence of (nonlinear) potentials, {qj , wj | j =
0, 1, 2, . . . }, which will allow the description of a doubly-infinite sequence of Abelian characteristics,
{Xj , Yj | j = 0, 1, 2, . . . }, for symmetries. Following the mode of description used for q2, and w2 in
Eqs. (3.1), we define, for instance, qj by giving the system of (compatible) pde’s that define its s-
and y-derivatives in terms of lower-order quantities. We do this via a pair of intermediary functions,
{ηj | j = 0, 1, . . . } and {ρj | j = 0, 1, . . . }, which are “mid-way” between an Abelian symmetry
characteristic and its associated potential:

D̂s qj = ηj ,

D̂y qj = − ρj eΩ



 =⇒ Xj = D̂s ηj = D̂s

2
qj . (3.4)

As already noted after Eqs. (2.11), the inclusion of new potentials into our jet bundle requires not
only the prolongation of the original bundle to include these quantities themselves but also their
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further prolongation to the infinite jet. More precisely, this is a prolongation of the space, N ,
of dependent variables, or, equivalently J (1)(M, N)/J (0)(M). When this larger space is extended,
now, to its infinite jet the new coordinates on the additional fibers could be taken, for instance, as
{qj , qj(σ) | j = 0, 1, 2, . . . ; |(σ)| = 1, 2, 3, . . . }, with all possible combinations of x, y, and s included
in the list denoted by (σ), with |(σ)| indicating its length. On the other hand, remembering the
role of the qj ’s as potentials, here we only want the restricted variety in that prolongation, i.e., the
prolongation of our earlier variety, Y∞. Referring to that prolonged variety by Ŷ∞, it is a surface
defined by all the pde’s in the new version of the system. Therefore, as the sets {qjs} and {qjy}, for all
non-zero values of j, are defined by Eqs. (3.4) above, we see that the fibers in this prolonged variety
need only have {qj , qjx, qjxx, qjxxx, . . . } as additional coordinates, with all other new coordinates
being reduced to the status of co-coordinates by those pde’s in Eqs. (3.4). Of course, when we do
also consider the case for the alternate (infinite) set of potentials, wk, those must also be included.
We will describe them soon, but will first explain in detail these (differential) polynomials, ηj and
ρ

k
.

These new functions, ηj and ρj , are (weighted) polynomials over the set of quantities {D̂x qm ≡
qmx | m = 0, . . . , j − 1}, only, involving no higher (or lower) coordinates on the infinitely prolonged
variety Ŷ(∞). In terms of these coordinates, the ηj may be written out explicitly, in terms of a sum
over all the (additive) partitions of their (integer) index:

η
k

=
∑

a∈P (k)

(|a| − 1)!
{a}!

k∏

j=1

(
D̂xqj−1

)a
j =

∑

a∈P (k)

( |a| − 1
a1 a2 . . . ak

) k∏

j=1

(
D̂xqj−1

)a
j

η0 = Ω ,

η1 = q0x ,

η2 = q1x + 1
2 (q0x)2 ,

η3 = q2x + q1xq0x + 1
3 (q0x)3 ,

η4 = q3x + q2xq0x + 1
2 (q1x)2 + q1x(q0x)2 + 1

4 (q0x)4 ,

η5 = q4x + q3xq0x + q2xq1x + q2x(q0x)2 + (q1x)2q0x + q1x(q0x)3 + 1
5 (q0x)5 ,

. . . .

(3.5)

The differential polynomials ρ
k

are closely related to the η
k−1 , being a sum of the same terms, but

with different coefficients:

ρk =
∑

a∈P (k−1)

|a|!
{a}!

k−1∏

j=1

(D̂xqj−1)
a

j =

{
k−2∑
m=0

qmx
∂

∂qmx

}
η

k−1 , k ≥ 2 ,

ρ1 = 1 ,

ρ2 = q0x ,

ρ3 = q1x + (q0x)2 ,

ρ4 = q2x + 2q1xq0x + (q0x)3 ,

ρ5 = q3x + 2q2xq0x + (q1x)2 + 3q1x(q0x)2 + (q0x)4 ,

ρ6 = q4x + 2q3xq0x + 2q2xq1x + 3q2x(q0x)2 + 3(q1x)2q0x + 4q1x(q0x)3 + (q0x)5 ,

. . . .

(3.6)
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The other sequence of new potentials, {wj | j = 0, 1, 2, . . . }, are related to similar functions ζj

and σj , polynomials in the {wmy ≡ D̂ywm | m = 0, 1, . . . , j− 1}, coordinates on the prolonged J (1),
in exactly the same way as before for the ηj and ρj , except that one must change all x’s to y’s, and
also all qj ’s to wj ’s:

D̂s wj = ζj ,

D̂x wj = − σj eΩ



 =⇒ Yj = D̂s ζj = D̂s

2
wj . (3.7)

Because these pde’s define the sets {wj,x, wj,s | j = 0, 1, 2, . . . } as co-coordinates, we must only
include as (new) coordinates for our prolonged variety, Ŷ(∞), the set {wj , wjy, wjyy, wjyyy, . . . } for
each value of j.

The indices for the qj and wk, and, especially the potentials q2 and w2, were chosen quite
deliberately since the definitions “backtrack” so that this sequence includes the simpler (linear)
potentials, Φ and Θ already introduced. We use Φ as an initial point for both sequences, but then
diverge from there, using instead Θx as q1 and Θy as w1:

D̂s q0 ≡ Ω = D̂s w0 =⇒ q0 = Φ = w0 ,

D̂s q1 ≡ D̂x q0 , D̂y q1 ≡ −eΩ ; D̂s w1 ≡ D̂y w0 , D̂x w1 ≡ −eΩ =⇒ q1 = Θx , w1 = Θy ,
(3.8)

and of course use the definitions given just above, Eqs. (3.1), for q2 and w2.

That all these pde’s are compatible is just a consequence of the pde itself. Alternatively, one
may say that they simply are a re-definition of the doubly-infinite hierarchy of commuting flows for
this pde, given already by Takasaki and Takebe[9]. In particular, since all the equations in that
hierarchy constitute distinct, commuting flows over the manifold, the various flow parameters along
those curves may be taken as new, independent variables. These variables are just the doubly-infinite
set of potentials which we have taken, instead, as additional variables to constitute prolongations of
our original jet bundle. An additional fascinating and unexpected consequence of these definitions,
and their compatibility with the original pde, is the fact that they satisfy a “linearization” of the
original pde:

D̂xD̂y qk + eΩ D̂s
2
qk = 0 . (3.9)

Of course the pde is not truly linear since the qk’s and Ω are tightly related via other pde’s.

Appendix B has some details of what little part of the theory of additive partitions of integers
that we need, this theory having been elaborated and studied in many ways. Here we simply note
that the set of all additive partitions of an integer k we denote by the symbol P(k). If a is an element
of this set, i.e., a ∈ P(k), then a is an ordered list of integers, ai ≤ k, where ai tells us how many
times the integer i is repeated in that particular partition; obviously 1 ≤ i ≤ k, and in any particular
partition, many of the ai’s will be 0:

a ∈ P(k) ⇐⇒ a ≡ {a1, a2, a3, . . . , ak} , ap ≥ 0 , such that k =
k∑

p=1

p ap . (3.10a)

Two very useful functions on these lists, |a| and {a}!, will be used often:

|a| ≡
k∑

p=1

ap , and also {a}! ≡
k∏

p=1

(ap)! . (3.10b)
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Obviously |a| satisfies the constraint that it must not be larger than k.

Having the explicit sequence of these polynomials, from which our potentials, qj (and also wk)
are first integrals, it is straightforward to calculate the sequence of Abelian characteristics, Xj . They
can be determined either from the polynomials ηj or from the ρj :

Xj = D̂sηj = D̂s
2
qj = e−ΩD̂x

(
e+Ωρj

)
= D̂xρj + Ωx ρj

= qj−2,xx + 2q0xqj−3,xx + . . . + Ωx(qj−2,x + . . . + qj−1
0x ) ,

X1 = Ωx , X2 = q0xx + Ωxq0x ,

X3 = q1xx + 2q0xq0xx + Ωx(q1x + q2
0x) ,

X4 = q2xx+2q0xq1xx + 2q0xxq1x + 3q2
0xq0xx + Ωx(q2x + 2q0xq1x + q3

0x) ,

. . . .

(3.11)

(In the second line above we use commas to separate x from a complicated index value such as
j − 3, just to make the meaning clear.) Of course the Yk’s are made in the same way. As already
noted these Xj ’s, and separately the Yk’s, form Abelian algebras of characteristics for generalized
symmetries.

To determine the more general versions of these characteristics, that involve arbitrary functions
(of one variable), we must first establish the complete prolongation of the total derivatives, and also
of the linearization operator. The new, infinitely-prolonged total derivatives then have the form:

D̂x = Dx + Φx∂Φ +
∞∑

k=1

∞∑
m=0

{
qk,(m+1)∂qk,(m) + w̃k,x(m)∂wk,(m)

}
,

D̂y = Dy + Φy∂Φ +
∞∑

k=1

∞∑
m=0

{
q̃k,y(m)∂qk,(m) + wk,(m+1)∂wk,(m)

}
,

D̂s = Ds +
∞∑

k=0

{ ∞∑
m=0

ηk,(m)∂qk,(m) +
∞∑

n=0

ζk,(n)∂wk,(n)

}
,

(3.12)

where, for instance, the notation qk,(m) means the coordinate on the prolonged bundle that is equal

to (D̂x)m
qk. As before the (prolonged) co-coordinates, denoted with over-tildes, always correspond

to derivatives of some qk or wj that involve both x and y-values of the independent variables. For

instance, those with one y and m x’s on a qk, i.e., q̃k,y(m), are determined by the action of (D̂x)m

on q̃k,y, which is given by the differential polynomial ρk, above; likewise those with one x and m y’s

on a wj , i.e., w̃k,x(m), are determined by the action of (D̂y)m on w̃j,x, determined by the polynomial
σj . [The use of this newer notation changes slightly the earlier form of the prolongation: since
q0 = Φ = w0, all the coordinates related to Φ, that appear in Eqs. (2.4) are all still contained in
this newer version, and not counted twice; and, since q1 = Θx and w1 = Θy, all terms that were in
Eqs. (2.12) related to Θ are here also, with one exception. That exception is the quantity Θ itself,
as opposed to any of its derivatives. It appears that Θ itself is never explicitly necessary in the
prolongation structure; only its derivatives are ever used. On the other hand, do note the comments
in the conclusions concerning the possible relationship between eΘ and a τ -function for this problem.]

For an α defined over the complete, prolonged variety Ŷ∞, the appropriate prolongation of the
Zα operator must now contain terms involving ∂qj , ∂qjx , . . ., ∂wj , ∂wjy , . . ., where j varies from 0
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to infinity, with α-dependent coefficients. We label those coefficients for ∂qj and ∂wj as Qj(α) and
Wj(α), respectively, while the coefficients for some higher-level fiber coordinate, say ∂qjxx , would just

be (D̂x)2 Qj(α), etc. Since q0 = Φ = Ds
−1

Ω and q1 = D̂xD̂s

−2

Ω are linear we already understand
how to construct prolongations corresponding to them: the appropriate coefficients for ∂q0 and

∂q1 would be Q0(α) ≡ D̂s

−1

α and Q1(α) ≡ D̂xD̂s

−2

α, respectively. However, q2 = D̂s

−1

η2 =

D̂s

−1

(Θxx + 1
2Φ2

x) = D̂s

−1

(q1x + 1
2q2

0x) depends on Ω in a nonlinear way—as do all higher qj ’s—so
that the prolongation appropriate for them is not as immediately obvious. The coefficient for, say,
∂q2 , namely Q2(α), should in fact be the linear part of q2(Ω+εα), or, equivalently, the first functional
derivative, with respect to α, of the expression q2(Ω):

q2(Ω) = D̂s

−1
{

D̂
2

xD̂s

−2

(Ω) + 1
2

{
D̂xD̂s

−1

Ω}2
}

, (3.13)

q2(Ω + εα)− q2(Ω) = D̂s

−1
{

ε D̂
2

xD̂s

−2

α + 1
2

{
2q0xεD̂xD̂s

−1

α
}

+ O(ε2)
}
≡ εQ2(α) + O(ε2) .

=⇒ Q2(α) ≡ D̂s

−1
{

D̂s

−2

D̂
2

xα + q0x D̂s

−1

D̂xα

}
= D̂s

−1 {
D̂xQ1(α) + q0x D̂xQ0(α)

}
. (3.14)

The entire set of new terms in Zα, for the additional potential, q2, should be the one with coefficient
Q2 plus all those generated by its x-derivatives, i.e., the following (infinite) sequence: Q2(α) ∂q2 +

[D̂xQ2(α)] ∂q2x + [D̂x
2
Q2(α)] ∂q2xx + . . . .

We must then continue in this manner, to include the corresponding sequences for q3, q4, etc.
Next we must also consider the various coefficients Wj(α) that must multiply ∂wj , for the other
(infinite) sequence of potentials, wj :

∂

∂ε
wj(Ω + εα)∣∣

ε=0

≡ Wj(α) = D̂s

−1
{

j−1∑

k=0

ζ
j−k

D̂y Wk(α)

}
,

W0(α) = D̂s

−1

(α) , W1(α) = D̂yD̂s

−2

(α) .

(3.15)

This finally gives us sufficient structure to provide the necessary generalization of our linearization
operator, which generalizes completely the earlier, provisional form given in Eq. (2.15):

Ẑα = Zα +
∞∑

k=0

{ ∞∑
m=0

[D̂
(m)

x Qk(α)]∂qk,(m) +
∞∑

n=0

[D̂
(n)

y Wk(α)]∂wk,(n)

}
. (3.16)

As the process of determining Q2(α), as described in Eqs. (3.13-14), seems fairly complicated
and would appear to become worse for Q3, etc., we now show the existence of a recursive algorithm
that allows us to calculate the Qk(α) sequentially, always giving us the next one in terms of those
with lower indices. However, to explain this, we must retreat slightly, and study in more detail the
relationship between the ηj ’s and ρk’s. Taking the definitions given earlier, it is straightforward to
show the following relation between them, and then a recursion algorithm for these polynomials:

∂ηj

∂q
kx

= ρ
j−k

=⇒ ρj+1 =
j−1∑
m=0

qmx ρj−m . (3.17a)
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Since the ηj depend only on these particular jet coordinates, {qkx | k = 0, . . . , j − 1}, we may also
determine the following additional useful recursion relation:

D̂xη
j

=

{
j−1∑

k=0

q
kxx

∂

∂qkx

}
η

j
=

j−1∑

k=0

q
kxx

ρ
j−k

. (3.17b)

To invert these relations it is useful to re-write them, using the form of a (lower-triangular)
matrix, Pj

k, with j = 1, 2, . . . while k = 0, 1, 2, . . .:

Pj
k ≡ ∂ηj

∂qkx
=

{
ρj−k , j > k,
0 , j ≤ k. (3.18)

Taking, now, the quantities {D̂xηj | j = 1, 2, 3, . . . } as the components of a column vector, and
{qkxx | k = 0, 1, 2, . . . } as the components of another, we see that Eqs. (3.17b) may be taken in the
form

D̂xηj =
j−1∑

k=0

Pj
k q

kxx
(3.19)

while Eqs. (3.17a) are essentially a statement defining the matrix Q, the inverse of the matrix P :

for k = 0, 1, 2, 3, . . . j = 1, 2, 3, . . . , Qk
j =

{−qk−j,x , k ≥ j,
1 , k = j − 1,
0 , k < j − 1.

,

Pj+1
k Qk

`+1 =





ρj−`+1 − {q0xρj−` − . . .− qj−`−1,xρ1} = 0 , ` < j ,
1 , ` = j ,
0 , ` > j .

(3.20)

With this information about the inverse, we may now solve Eqs. (3.17b) for the column vector with
components qkxx:

q
kxx

=
k+1∑

j=1

Qk
j D̂xηj = D̂xηk+1 −

k−1∑
m=0

qmx D̂xη
k−m

. (3.21)

Since the process of determining the linear part of qj(Ω + εα) is just a derivation, we simply

follow the same procedure as was used to determine Eqs. (3.17b), replacing the derivation D̂x acting
on ηj treated as a function of {x, y, s}, with the determination of this linear part, treating the ηj

instead as D̂s qj(Ω). That process gives us the desired recursive algorithm to obtain D̂s Qk(α) in

terms of the set {D̂xQj | j = 0, . . . , k − 1}:

D̂s Qk(α) =

{
k−1∑
m=0

[D̂x Qm(α)]
∂

∂qmx

}
η

k
=

k−1∑
m=0

ρ
k−m

D̂x Qm(α) . (3.22)

The general equation for the Qk(α)’s involves an s-integration, which obviously cannot be per-
formed exactly for any arbitrary function α. As usual, however, we only need to perform that
integration when the argument is a characteristic for a (generalized) symmetry. Therefore, choos-
ing that α as a characteristic, Xj , we can accomplish explicitly the s-integration. The forms given
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above will always involve some second derivatives of qm, i.e., terms of the form qmxx. We may use
Eqs. (3.21) to replace these in terms of a series of quantities involving D̂xηn = D̂s qnx, which allows
the desired integration. This must be done sequentially; therefore, we now write down the first two,
which are very simple, then proceed onward to Q2(Xj) explicitly, and then consider the more general
case. Those first two are just the following:

Q0(Xj) = Ds
−1

(Xj) = ηj , Q1(Xj) = DxDs
−2

(Xj) = qjx . (3.23)

On the other hand, returning to Eq. (3.14) for the interesting case α = Xj , we have

Q2(Xj) = Ds
−1{qjxx + q0x Dxηj} . (3.24)

When j = 1 the integrand above is simply the form for D̂xη1, so that Q2(X1) = q1x. For larger
values of j we may proceed as already described, by eliminating the displayed qjxx via Eqs. (3.21),
which gives us

Q2(X1) = q1x ,

Q2(Xj) = Ds
−1

{
Dxηj+1 −

j−1∑
m=1

qmxDxηj−m

}

= qj+1,x −Ds
−1

{
j−1∑
m=1

qmxDxηj−m

}
= qj+1,x − 1

2

j−1∑
m=1

qmxqj−m,x , j ≥ 2 .

(3.25)

We can continue onward, then, to Q3(Xj):

Q3(Xj) = D̂s

−1 {
ρ1D̂xQ2(Xj) + ρ2D̂xQ1(Xj) + ρ3D̂xQ0(Xj)

}
= . . .

= D̂s

−1
{

D̂xηj+2 −
j∑

k=0

qkxD̂xη
j+1−k

−
j−1∑

k=1

qkxqj−k,xx

+ q0x

[
D̂xηj+1 −

j−1∑
m=0

qmxD̂xηj−m

]
+ [q1x + (q0x)2]D̂xηj

}
,

= . . . = qj+2,x −
j−1∑

k=1

qkxqj+1−k,x + 1
3

{ j−2∑

k=1

j−k−1∑
m=1

qkxqmxqj−k−m,x

}
, j ≥ 3 .

(3.26)

For smaller values of j, one can simply terminate the derivation earlier. On the other hand, it turns
out that they are more easily described by simply noting that

Qk(Xj) = Qj(Xk) . (3.27)

As these forms are becoming lengthy, we now simply note another couple of examples, and then
describe the structure in a general way:

Q4(X5) = q8x − q6xq1x − 2q5xq2x − 3q4xq3x + (q2x)3 + 4q3xq2xq1x + q4x(q1x)2 − q2x(q1x)3 ,

Q5(X5) = q9x − q7xq1x − 2q6xq2x − 3q5xq3x + q5x(q1x)2 − 2(q4x)2 + 4q4xq2xq1x

+ 3(q3x)2q1x + 4q3x(q2x)2 − q3x(q1x)3 − 3(q2xq1x)2 + 1
5 (q1x)5 .

(3.28)
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To consider the general case, we first note that we may always use Eq. (3.27) to convert those
objects with j < k into those where j ≥ k. We ascribe a “grade” of m + 1 to the quantity qmx

and note that Qk(Xj) has grade k + j. For j ≥ k, it is composed of a sum of all products of k or
fewer qmx’s, such that the grade of the entire product equals k + j. The single term with only one
element in the product will, of course, always be qk+j−1,x and is positive. From there on the signs
alternate so that the sign of a term with n elements in the product will have sign (−1)n−1. The
explicit coefficients vary depending on the number of repetitions of a single quantity in an individual
product. However, any individual one may be calculated explicitly by the method described above.

There are also some other quantities for which we know that Qk(α) should be explicitly defined.
These are of course the other objects which we need to use to calculate commutators with these
generators, i.e., the characteristics Yj and the characteristics for the Lie symmetries in the s-direction,
GS(α, β). This last set is very straightforward, and the calculation gives us

Qk[GS(α, β)] = (αs + β) ηk − (k + 1)α qk . (3.29)

The other set is obviously a larger question, if only because there are very many more of them. We
begin with the straightforward ones as before:

Q0(Yj) = D̂s

−1

(Yj) = ζj ≡ D̂s wj ,

Q1(Yk) = wkx = −σk eΩ , Qk(Y1) = qky = −ρk eΩ ,
(3.30)

where the polynomials ρk are given in Eqs. (3.6), while we recall that the σk’s are just the polynomials
ρk with all x’s interchanged with y’s and all qm’s interchanged with wm’s. The alternation between
a function of the wk’s and a function of the qk’s, for the two options in the previous equations,
suggests that we will need polynomials in both of these sets of potentials for the more general case,
namely Qk(Yj). We therefore first define generalizations of the polynomials, ρk, σk, etc. that we
have already been using. We take Pj

k and Qj
k as graded polynomials over all integer partitions of

k − 1, in the variables {qkx} or the {wjy}, respectively, but otherwise the same:

Pj
1 = 1 = Qj

1 ,

for k ≥ 2,





Pj
k ≡

∑

a∈P (k−1)

(|a|+ j − 1)!
(j − 1)!{a}!

k−1∏
n=1

(D̂xqn−1)
an

,

Qj
k ≡

∑

a∈P (k−1)

(|a|+ j − 1)!
(j − 1)!{a}!

k−1∏
n=1

(D̂ywn−1)
an

.

(3.31)

Comparison with Eqs. (3.6) shows that P1
k = ρk, and Q1

k = σk, i.e., these earlier ones were just
the lowest-order members of these new sequences. It is then straightforward to work out the simple
descriptions for this last set of coefficients we need:

Q`(Yk) =
min(`,k)∑

m=1

(−1)m

m
Pm

`+1−mQm
k+1−m emΩ , (3.30)

with some other particular examples being given as

for k ≥ 2,

{
Q2(Yk) = 1

2P2
1Q2

k−1 e2Ω − P1
1Q1

k eΩ ,

Qk(Y2) = = 1
2P2

k−1Q2
1 e2Ω − P1

kQ1
1 eΩ ,

for k ≥ 3,

{
Q3(Yk) = − 1

3P3
1Q3

k−2 e3Ω + 1
2P2

2Q2
k−1 e2Ω − P1

3Q1
k eΩ ,

Qk(Y3) = − 1
3P3

k−2Q3
1 e3Ω + 1

2P2
k−1Q2

2 e2Ω − P1
kQ1

3 eΩ ,

(3.32)
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To continue this, we must also follow an entirely analogous procedure to calculate the coefficients
Wj(α), D̂yWj(α), respectively. However, they may be obtained easily from the ones already given,
by the process of interchanging all x’s with y’s, all qk’s with wk’s, ηk’s with ζk’s, Pj

k with Qj
k, etc.

The process of these interchanges takes Qk(Xj) into Wk(Yj), Qk(Yj) into Wk(Xj), and Qk[GS(α, β)]
into Wk[GS(α, β)]. This process is quite straightforward, if perhaps tedious, and we do not write
them out.

4. The Two Infinite Sets of Symmetry Characteristics

The prolongations described above now allow the calculation of any commutators of character-
istics desired. In particular, we recall that the discussions after Eqs. (2.17) noted that commutators
with the characteristic GX2[R], i.e. commutators of the form {GXj [A], GX2[R]} had the property
of a recursion operator for those characteristics we had already found at that point, as described in
detail at Eqs. (2.18), for j = 2, giving GX3, and Eqs. (3.3), for j = 3, giving GX4. We now are
able to calculate such commutators for arbitrary values of j, which allows us easily to see that this
gives an infinite sequence of characteristics, each with its own arbitrary function, and s-dependent
polynomials. The structure as a recursion operator is as expected:

{GXj [A], GX2[R]} = GXj+1[2RA′ − jAR′] ⇔ {Xa
j , X1

2} = (2a− j)Xa
j+1 . (4.1)

It is simplest to display these as second (total) s-derivatives of the appropriate polynomial forms.
When this is done the result, for GXk[A], is a polynomial beginning with a term containing A, then
a term containing A′, a term containing A′′, etc., up to a term containing A(k), the k-th derivative of
the function A. For m < k, the coefficient of the term containing A(m) is a polynomial in s, of order
m, and the coefficients in this polynomial are made only of products of the qj ’s themselves. The last
term, which contains A(k), is simply sk+1A(k)/(k + 1)!. We display the general result below, along
with some explicit examples to give a better “feel” for their form, noting that forms for GX1[A] and
GX2[A] have already been given:

GXk[A] = D̂s
2





sk+1

(k + 1)!
A(k) +

k−1∑
m=0

A(m)
∑

a∈P(k−m)

|a|∏
n=1

in

{a}! (m− |a|+ 1)!
sm+1−|a|

k−m∏

j=1

(qj)
aj





, (4.2)

GX3[A] = D̂s
2
{

3Aq3 + A′(2sq2 + 1
2q2

1) + s2

2 A′′q1 + s4

24A′′′
}

,

GX4[A] = D̂s
2
{

4Aq4 + A′(3sq3 + 2q1q2) + A′′s(sq2 + 1
2q2

1) + s3

6 A′′′q1 + s5

120A(iv)
}

,

GX5[A] = D̂s
2
{

5Aq5 + A′[4sq4 + 3q1q3 + 2(q2)2] + 1
2A′′(3s2q3 + 4sq1q2 + (q1)3/3)

+ 1
3A′′′s2(sq2 + 3(q1)2/4) + A(iv)s4q1/24 + A(v)s6/720

}
.

(4.3)

As usual, there is the completely analogous infinite sequence of (non-Abelian) characteristics, each
with its own arbitrary function of one variable, B(y), which we label as {GYk[B] | k = 1, . . . },
with the same structure. We may therefore display explicitly the commutators of each set, with
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themselves and with each other:

{GXj [A], GXk[R]} = GXj+k−1[kRA′ − jAR′] ,
{GXj [A],GYk[B]} = 0 ,

{GYj [B], GYk[S]} = GYj+k−1[kSB′ − jBS′] .

(4.4)

We may also pull out the two basis sets, and display their commutators, which of course have the
same content as the ones just above:

Xb
a ≡ GXa(xb) , Y b

a ≡ GYa(xb) ,

{Xa
j , Xb

k} = (ak − bj)Xa+b−1
j+k−1 , {Xa

j , Y b
k } = 0 , {Y a

j , Y b
k } = (ak − bj)Y a+b−1

j+k−1 .
(4.5)

On the other hand, the two original Lie symmetry characteristics, S0 and S1, do not commute with
them, but do treat the two sets equally, where we use GS(α, β) = α S0 + β S1:

{Xb
a, S0} = (a− 1) Xb

a , {Y b
a , S0} = (a− 1)Y b

a ,

{Xb
a, S1} = bXb−1

a−1 , {Y b
a , S1} = b Y b−1

a−1 .
(4.6)

We may also recall that the Abelian subalgebras of this large algebra, which are responsible for the
commuting hierarchy of pde’s built over the original SDiff(2) Toda equation is defined by

Xa ≡ 1
a X0

a , Yb ≡ 1
b Y 0

b ,

{Xa, Xr} = 0 = {Xa, Yb} = {Ys, Yb} .
(4.7)

5. Conclusions

Our search for these generalized symmetries of this equation began with a somewhat different
quest. We were looking for a generalization of the Estabrook-Wahlquist method of finding non-
local potentials, and associated Bäcklund transformations, that would be generic for pde’s with
three or more independent variables. The SDiff(2) Toda equation seemed like an ideal candidate
as a beginning for this project, since the more usual Toda lattice equations had well-defined non-
local (EW) prolongation structures and Bäcklund transformations. Limits of those (systems of)
2-dimensional equations lead to our current pde in a straightforward way; however, the associated
limits of the prolongation structures[3,18] led to nothing interesting. We still have no new directions
for that search.

Nonetheless, in some attempt to “buy” new solutions from old ones, for this pde, we decided to
consider the generalized symmetries, beyond the usual Lie symmetries. This also led to a null result.
That problem was resolved by finding that each generalized symmetry required the addition of an
additional pair of first-order equations to the original system, defining the inclusion of a new potential
to the jet bundle. This has then generated the entire structure of generalized symmetries described
here. We have taken the original, commuting hierarchy of symmetries, found by Takasaki and Takebe,
and broadened it extremely into our Lie algebra of generalized symmetries, which is definitely no
longer Abelian. This allowed it to be described via a recursion operation, which generates the entire
doubly-infinite algebra.
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An important and interesting question is just how one may use this new structure to create new
(families of) solutions to the original pde. We trust that this larger explication of the generalized sym-
metries of the equation will eventually be helpful in a better understanding of the solution manifold
for the problem. There are several possible routes to an answer to this question. A very interesting
one involves the work of Hernández, Winternitz, et al[19], which provides correspondences between
continuous symmetries and Bäcklund transformations for the Toda lattice equations. Whether such
an idea can be moved over to this limiting equation we do not yet know, but the idea is a promising
one. Another direction has to do with the τ -function for the hierarchy of Takasaki and Takebe.
In other work, on the KP equation, the appropriate τ -function, considered as depending on all the
(infinitely-many) independent variables of the hierarchy problem, has been used as a source to gen-
erate (almost) all solutions of the original nonlinear equation. Takasaki and Takebe characterize
the τ -function for this particular problem, and it appears to us that the function we have called eΘ

satisfies all those criteria. Therefore further study of it may well show that it also has the virtue of
being able to tell us how to find the desired general solutions. However, research on that question is
just beginning.

Appendix A

We begin with the standard Plebański[20] formulation for an h-space, i.e., a 4-dimensional,
complex manifold with a self-dual curvature tensor that satisfies the Einstein vacuum field equations.
Such a space is determined by a single function of 4 variables, Ω = Ω(p, p̄, q, q̄), which must satisfy
one constraining pde, and then determines the metric via its second derivatives, as follows:

Ω,pp̄Ω,qq̄ − Ω,pq̄Ω,qp̄ = 1 ,

g = 2(Ω,pp̄ dp dp̄ + Ω,pq̄ dp dq̄ + Ω,qp̄ dq dp̄ + Ω,qq̄ dq dq̄) .
(A1)

Restricting attention to those complex spaces that allow real metrics of Euclidean signature, there
are only two possible “sorts” of Killing vectors, “translations” and “rotations.” Noting that the
covariant derivative of any Killing tensor must be skew-symmetric, by virtue of Killing’s equations,
we may make this division more technical by dividing the class of Killing vectors based on this
skew-symmetric tensor’s anti-self-dual part, which Einstein’s equations require to be constant. The
“translational” Killing vectors are those for which this anti-self-dual part vanishes, while it does not
vanish for the “rotational” ones. The self-dual case—where the anti-self-dual part vanishes—has
been completely resolved[21]. (In this case the constraining equation for Ω reduces simply to the
3-dimensional Laplace equation.)

We continue by insisting that the space under study admit a rotational Killing vector, ξ̃, and
then re-defining the variables so that they are adapted to it:

ξ̃ = i(p∂p − p̄∂p̄) ≡ ∂φ , ξ̃(Ω) = 0 , p ≡ √
r eiφ , p̄ ≡ √

r e−iφ , (A2)

which changes the constraining equation as follows, construing Ω to now depend on the variables
{r, q, q̄}, but not φ:

(rΩ,r),rΩ,qq̄ − r Ω,qrΩ,q̄r = 1 . (A3)

It is however often more convenient to rewrite the constraining equation, and the metric, in terms of
a new set of coordinates, obtained from the original ones via a Legendre transform based on variables
r and s ≡ rΩ,r. Taking {s, q, q̄}, along with φ, as the new coordinates, and v ≡ ln r as the function of
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these coordinates that will generate the metric, we find the following new presentation, which shows
the agreement with the SDiff(2) Toda equation, where we must simply identify this new function v
with the function Ω as given in Eq. (1.1):

g = V γ + V −1(dφ + ω∼)2 ,

V ≡ 1
2v,s , γ ≡ ds2 + 4 ev dq ∧ dq̄ , ω∼ ≡ i

2{v,qdq − v,q̄dq̄}

v,qq̄ + (ev),ss = 0 , and ∗
γ
(dω∼) = −iV 2d(2s− V −1) .

(A4)

Another distinct use for this equation is the desire to have a manifold which is scalar flat and
Kähler. LeBrun[22] showed that the solutions of a pair of pde’s was necessary to answer this question.
One of those is the SDiff(2)Toda equation, and the other one the linearization of that equation, for
a second dependent function. This has been an important impetus for some of the work on the
problem of SU(2)-invariant metrics[2].

Appendix B

We give here simply a somewhat more detailed description of the set of additive partitions of
integers, which have been described and studied in many ways. For a given integer, k, any particular
(additive, integer) partition is simply a list of positive integers with sum equal to the given integer,
k. We label any one such partition by a, and may describe it in more detail as the sequence
[i1, i2, . . . , i|a|], with all the ij ’s being non-zero, and where, by convention, we order the entries so
that ij ≥ ij+1, and |a| is the number of (non-zero) entries in a. It may well turn out that some
of these quantities are the same, in which case we may use am to count the number of times the
integer m ≤ k appears in that sequence. The set of all such integer partitions for a given k is denoted
by P(k), and we will denote its number of elements, i.e., the number of distinct partitions of k, by
p(k)An example for k = 5 is given by the following:

P(5) =
[
[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]

]
. (B1a)

For larger k at least, a “shorter” alternative is to use “powers” for those integers that are repeated
in a particular partition, with the previous example being shown below in this mode:

P(5) =
[
[5], [4, 1], [3, 2], [3, 12], [22, 1], [2, 13], [15]

]
. (B1b)

In these examples, we have also introduced an ordering of the partitions relative to one another so
that those with larger entries appear first, i.e., to the left.

On the other hand it is more useful at the moment to describe any particular partition of k,
i.e., some a ∈ P(k), by giving an ordered list of non-negative integers, ai, where ai tells how many
times the integer i is repeated in that particular partition. We note that obviously we must have
1 ≤ i ≤ k. This corresponds to the list of all the powers that appear in the second presentation
of the partitions of 5, above, except that we carefully consider all integers between 1 and k to be
present, so that some integers have power 0:

a ∈ P(k) ⇐⇒ a ≡ {a1, a2, a3, . . . , ak} , ap ≥ 0 , such that k =
k∑

p=1

p ap . (B2)
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In this form our example above takes the form

P(5) =
[
{0, 0, 0, 0, 1}, {1, 0, 0, 1, 0}, {0, 1, 1, 0, 0}, {2, 0, 1, 0, 0},

{1, 2, 0, 0, 0}, {3, 1, 0, 0, 0}, {5, 0, 0, 0, 0}
]
.

(B3)

It is this form of description of the partitions that is used in the definitions of the various sets of
polynomials given in the main text, such as the ηk in Eqs. (3.5).

As already noted in Eqs. (3.11), there are various useful functions that describe individual
members of a the set of all partitions of k. Two of these that we need are |a| and {a}!:

|a| ≡
k∑

p=1

ap ≤ k , and also {a}! ≡
k∏

p=1

(ap)! . (B4)

Continuing with our example above, for the partitions of 5, these mappings have the following values
there:

for a ∈ P (5), |a| =−→ [1, 2, 2, 3, 3, 4, 5] , {a}! =−→ [1, 1, 1, 2, 2, 6, 120] . (B5)

The simple explanation as to why these coefficients enter into our calculation is that the co-
ordinates on the jet bundle may be graded, i.e., assigned a weight so that the various pde’s have
a consistent weight. A reasonable way to describe that begins with the consideration of a formal
infinite series, L, in powers of some grading parameter, l:

Ln =

{
1 +

∞∑

i=0

uil
−i−1

}n

≡
∞∑

m=0

Cn
mλ−m . (B6)

The early values of the coefficients Cn
m are easily seen to satisfy the following simple relations:

Cn
0 = 1 , Cn

1 = nu0 , Cn
2 =nu1 +

(n

2

)
u2

0 , Cn
3 = nu2 + 2

(n

2

)
u1u0 +

(n

3

)
u3

0 . (B7)

However, we would like a more general description of them. Because of the association of the index
on ui with the power of λ one may ascribe a “weight” to the ui’s: give the weight j + 1 to the factor
uj , which causes the coefficient Cn

m to be a sum of terms, with distinct coefficients, each of which has
the same overall weight, namely m. Therefore those uj ’s that contribute to a given coefficient Cn

m

have weights described by the different (positive, integer) partitions of m; these form a set, which
we label as P (m). This tells us to display the Cn

m as a sum over all those terms, each with an
appropriate coefficient, which is a pure (combinatorial) number:

Cn
m =

∑

a∈P (m)

C(n;m | a)ua1
0 ua2

1 . . . uam
m−1

=
∑

a∈P (m)

C(n;m | a)
m∏

j=1

(uj−1)aj , a = {a1, , a2, . . . , am} ,

(B8)

C(n; m | a) ≡ n(n− 1) . . . [n− |a|+ 1]
a1! a2! . . . am!

=
n!

[n− |a|]! {a}! =
(

n

|a|
) (

(|a|)!
{a}!

)
. (B9)
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The coefficients C(n;m | a) exist for each integer value of n, and for every partition of m, i.e.,
for a ∈ P (m). It works, in particular, for negative as well as positive values of n, provided we
simply make the usual, standard substitutions for the binomial coefficients. For instance when we
set n = −p, for negative values of n, we have

(n

r

)
r! = n(n− 1) . . . [n− r + 1] → (−1)rp (p + 1) . . . [p + r − 1] = (−1)r

(
p + r − 1

r

)
r! .

Therefore, in the case that n ≡ −p is negative, we may determine the desired coefficients as follows:

Cn
m =

∑

a∈P (m)

E(p ; m | a)(−1)|a| ua1
0 ua2

1 . . . uam
m−1 , a = {a1, , a2, . . . , am} ;

E(p ;m | a) =
[p + |a| − 1]!

(p− 1)! a1! a2! . . . am!
=

(
p + |a| − 1

|a|
)(

(|a|)!
{a}!

)
,

note that E(1; m | a) = (−1)|a|C(−1; m | a) just simplifies to
(

[r(a)]!
{a}!

)
.

(B10)

It is exactly these coefficients E(p ; m | a) that appear in the definitions of the polynomials Pp
k , in

Eqs. (3.31).

Good general references for the theory of partitions, and proofs of the properties of the coeffi-
cients C(n; m | a), are found in the books by Comtet[23] and by Riordan[24].
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