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The general class of Robinson-Trautman solutions [1] to the vacuum Einstein field equa-

tions have been important examples of exact solutions for many years, albeit they seem to have

various difficulties with respect to their interpretation [2]. They are solutions characterized by

having a repeated principal null direction, which is of course geodesic and shearfree, and is

required to be diverging but not twisting. The standard reference [3] gives the general form

of the metric which any Einstein space must have if it permits such a repeated principal null

direction, and notes that all possible algebraically-special Petrov types are allowed. In the case

of Petrov type III, the field equations are [3] first reduced to

K = ∆ log P ≡ 2P 2∂ζ∂ ζ log P = −3[f(ζ, u) + f(ζ, u)] , (1)

where K is the Gaussian curvature of the 2-surface spanned by ζ and ζ. This equation de-

termines the general RT-solution of Petrov type III. However, since u is nowhere explicitly

mentioned within the partial differential equation (pde), it is well-known [3] that one could

always simply ignore that dependence, perform a coordinate transformation sending f(ζ) → ζ,

leaving the curvature completely invariant, and reducing our equation to the rather simple-

appearing equation

K = 2P 2∂ζ∂ ζ log P = − 3
2 (ζ + ζ) ,

or uxy = 1
2 (x + y)e−2u , where log P ≡ u , (2)

the subscripts denote partial derivatives, and the symbols {x, y} have been introduced instead

of {ζ, ζ}, both to simplify the typography and to normalize the equation so that the coefficient

has a value which will prove convenient.

As already pointed out, all Petrov type III solutions of the vacuum field equations with di-

verging, non-twisting null directions are determined by the general solution of Eq. (2). Nonethe-

less, only one rather trivial solution is available for study, namely P = (ζ + ζ)3/2, even though

all its Lie symmetries have been found [4]. This unfortunate situation has caused us to ap-

ply the general methods of Estabrook and Wahlquist [5] to this equation, for determination

of (pseudo)-potentials, in the hope of generating new solutions. The EW procedure is a par-

ticular approach to the determination of non-local symmetries of a pde [6]. It has been used

successfully [7-10] in many contexts, although it must be admitted that applications toward

finding RT solutions of Petrov type II were unsuccessful [11-12].

The situation for Petrov type III seems to be much better. We have in fact obtained a

complete, but so far still abstract, description of the space of allowed pseudopotentials. The
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unexpected consequence of this search was that the smallest space that allows a solution of

the problem must be a carrier space of a realization, via vector fields, of an algebra of infinite

growth [13,14], usually referred to as K2 [14,15]. This algebra has so far resisted any attempts

to find explicit realizations. The name was created by Kac [14] in his early article separating

those algebras now called Kac-Moody algebras away from classes of much larger algebras. Kac

used K2 as a “simple” example of a contragredient algebra not in the Kac-Moody class.

We begin our investigation by describing the solution space for the equation as a surface,

Y , in the jet space, J (2), that treats dependent functions and their first and second derivatives

as independent quantities until a specific solution is obtained. The Estabrook-Wahlquist pro-

cedure guides one in searches for F and G, vector fields over a space, W , of pseudopotentials,

{wA | A = 1, . . . , N}, that we wish to adjoin to the original jet space. These vector fields pro-

vide prolongations of the (usual) total derivative operators on the jet space, i.e., {Dx, Dy}, to

the combined space of variables, J ⊕W , which then must satisfy the zero-curvature equations

when restricted to Y : [
D̃x + F , D̃y + G

]
= 0 , (3)

where the tilde indicates that the operators have been restricted to the subspace, Y , of solu-

tions. This is a slight generalization of the usual notion of the zero-curvature equations of Lax

or of Zakharov and Shabat [16], since F and G are simply elements of an abstract Lie algebra,

of vector fields, with neither the coordinates, nor even N , yet determined.

Following the approach of Cartan [17], the EW procedure for a pde in 2 independent

variables may be described as follows [18]. We first choose a (closed) ideal, K, generated by a

set of 2-forms, {αr}, that describes the original pde. We then adjoin the variables wA to the

system by appending (to the original ideal) contact forms, ωA, for each of these new variables,

and insisting that the ideal remain closed:

ωA =− dwA + FAdx + GAdy,

dFA ∧ dx+dGA ∧ dy = fA
r αr + ηA

B ∧ ωB ,
A = 1, . . . , N , (4)

where the functions FA and GA are the coefficients of the vector fields, F and G, that define

the zero-curvature representation of the problem. These brief sentences describe the “essence”

of the EW procedure, which embodies two notions, the first being the choice of a sufficiently-

small ideal that calculations can be carried out successfully, while the other is that the new

potentials are all allowed, from the beginning, to depend on each other, thereby rendering

the process of discovering them nonlinear, and justifying the name, “pseudopotentials,” for
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these additional variables. The newly-introduced functions fA
r and 1-forms ηA

B constitute

“Lagrange multipliers” for the system, their existence being the explicit characterization of

closure of the prolonged ideal. Because of this the final choices of F and G must maintain

non-zero the multipliers fA
r, since they retain the information needed by the procedure to

“remember” the original ideal, and therefore the given pde.

Comparison of the coefficients of the various independent 2-forms on both sides of Eq. (4)

determines those jet-variables on which FA and GB do not depend, and expresses the Lagrange

multipliers, in terms of derivatives of the FA and GB . The only remaining requirements of

closure, in Eq. (4), are that the coefficient of dx∧ dy should vanish. This particular coefficient

is the expression of the commutator in Eq. (3), obtained by this method.

For the RT equation, we choose our ideal, K, as that ideal within Λ2(J (1)) generated by

(du− p dx) ∧ dy , (du− q dy) ∧ dx , dp ∧ dx− dq ∧ dy + (x + y)e−2u dx ∧ dy . (5)

While this is in fact not the smallest choice, its symmetry makes the problem rather easier. (We

will show in Appendix I that making other choices does not change our (minimal) result, con-

cerning K2.) Comparing coefficients gives us the non-dependencies, the Lagrange multipliers,

and the commutator equation for this particular ideal:

Fq = 0 = Gp ; λA
1 = GA

u , λA
2 = FA

u , λA
3 = ZA ,

[F + ∂x,G + ∂y] = −pGu + q Fu + 1
2 (x + y)e−2u(Fp −Gq) .

(6)

Comparing coefficients in Eq. (6), the stated dependencies allow us to infer the existence

of vertical vector fields B, C, and Z such that

F = pZ + B , G = −q Z + C , Zu = 0 , (7)

Re-inserting these forms into Eq. (6), it becomes a polynomial in p and q, so that the vanishing

of all of the separate coefficients gives the following equations:

[Z , C] = −Cu + Zy , [Z , B] = +Bu + Zx , (8a)

[B , C] = By −Cx + (x + y)e−2uZ . (8b)

To proceed further with the integration of these equations, we must make some assump-

tion concerning the dependence on the independent variables. In most studies of pde’s via
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the EW prolongation procedure, it is common to assume no dependence on the independent

variables [19], although the Ernst equation has indeed been an exception [10] to this. However,

having explicit dependence on those variables, it should be clear that this equation will require

some dependence of F and G on {x, y}. Originally, we argued that the most reasonable ap-

proach would be to assume that Fx = 0 = Gy, since those derivatives would not appear in

the final expression anyway. This approach can in fact be completed, and will be discussed in

Appendix II; however, at least in this instance, we will show that it is gauge equivalent to the

opposite approach, namely that Fy = 0 = Gx, which is the rather simpler road we shall now

follow. Since Z appears in the expressions for both of F and G, this requires that Zx = 0 = Zy,

and reduces Eqs. (8) to

[Z , C] = −Cu , [Z , B] = +Bu , [B , C] = (x + y)e−2u Z , (9)

where B = B(x) and C = C(y).

The first two of Eqs. (9) are simply flow equations for a vector field [18], which are imme-

diately integrated to give

B(x, u) = e+u(ad Z) R(x) , C(y, u) = e−u(ad Z) S(y) , (10)

where we have indicated explicitly the assumed x- and y-dependence. Inserted into the last of

Eqs. (9), these forms give us the “last” requirement,

[e+u(ad Z) R(x) , e−u(ad Z) S(y)] = (x + y)e−2u Z . (11)

We interpret this condition as the agreement of two power series in u; the coefficients of uk/k!

are given by

k∑
m=0

(−1
2

)k(
k

m

)
[R(k−m) ,S(m)] = (x + y)Z , ∀k = 0, 1, 2, . . . , (12)

where the subscripts in parentheses indicate repeated commutators with Z:

R(m) ≡ (−1)m(adZ)m R(x) , S(m) ≡ (adZ)m S(y) , ∀m = 0, 1, 2, . . . . (13)

The 0-th order term of Eq. (11) implies that [Z , [R(x) ,S(y)]] = 0. Inserting this fact into

the Jacobi identity shows that the commutators [R(k−m) ,S(m)] are actually independent of

the value of m, allowing us to sum the series in Eqs. (12):

[R(i) ,S(j)] = (x + y)Z , ∀i, j = 0, 1, 2, . . . . (14)
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While there is no obvious requirement that the various R(i), for example, be parallel, the

fact that the right-hand side of the equation depends on neither i nor j does surely suggest

such a thought. In Appendix II, we describe the more general case, while here we take as an

additional assumption that all R(i) are parallel, and that all S(j) are parallel. The coefficients

of proportionality are determined uniquely, causing the infinite sums for B and C to both

become proportional to e−u. This allows all u-dependence to be factored out of Eq. (11),

reducing it to the simpler requirement:

[Z, S] = S , [Z, R] = −R , =⇒ [R(x), S(y)] = (x + y)Z . (15)

The explicit existence of x and y in the original pde generated the need for x- and y-

dependence of our prolongation vector fields. Since, however, they are linear in those variables,

and display themselves explicitly that way in the last of the equations in Eqs. (15), it seems

sufficient to consider the yet-further special case when R(x) and S(y) are just first-order

polynomials in their respective jet variables:

R(x) ≡ −f1 − xf2 , S(y) ≡ +e2 + ye1 . (16)

Inserting these forms into Eqs. (15) gives the complete presentation of the prolongations of the

total derivatives as explicit functions of the original jet variables:

F = pZ− e−u(f1 + xf2) , G = −qZ + e−u(e2 + ye1) . (17)

The final requirements on the system are simply statements of some of the commutators of the

vector fields on the fibers (of pseudopotentials) themselves:

[Z, ei] = ei , [Z, fi] = −fi , i = 1, 2 ,

[e2, f1] = 0 = [e1, f2] , [e1, f1] = Z = [e2, f2] .
(18)

Referring to Eqs. (6), we see that the three Lagrange multipliers are now proportional to

{R(x),S(y),Z}. Our next task is to determine a realization of the algebra defined by these 5

generators, which maintains these three quantities linearly independent. This algebra, defined

by the 5 generators above, is still not completely displayed since the quantities [e1, e2] and

[f1, f2] are not given, and are therefore to be considered arbitrary modulo the requirements of

the Jacobi identity. As examples of these sorts of requirements, it is straight-forward to show

that
[Z, {(ad e1)

ne2}] = (n + 1){(ad e1)
ne2} ,

[e2, {(ad f2)m+1f1}] = − 1
2 (m + 1)(m + 2){(ad f2)

mf1} .
(19)
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A presentation of any Lie algebra as a direct sum of subspaces, with the following requirement

on the Lie bracket operation, is referred to as an (integer)-graded Lie algebra:

G =
∞⊕

i=−∞
Gi , [Gi , Gj ] ⊆ Gi+j . (20)

If di is the dimension of Gi, as a vector space, then

r ≡ lim
i→∞



log




i∑

j=−i

dj




/
log(i)



 (21)

is called [13,14] the growth of the full Lie algebra, G. Finite-dimensional Lie algebras have

growth 0, while those usually referred to as Kac-Moody algebras have finite growth. We refer

to Ĝ ≡ G−1⊕G0⊕G1 as the local part of G, and supplement our definition of a graded algebra by

insisting that it should be (algebraically) generated by commutators of its local part, so that

the grading is then well-defined. (This is of course what one would expect.) For our algebra,

we take the local part as follows:

G0 ≡ {Z} , G−1 ≡ {fi | i = 1, 2} , G1 ≡ {ei | i = 1, 2} . (22)

The first equality in Eqs. (19) then tells us that the dimension of Gi is growing rapidly unless

the objects {(ad e1)
ne2} were to vanish from some value of n onward, which is indeed what

occurs in a Kac-Moody algebra. The second equality in Eqs. (19) tells us that if those quantities

were to vanish, there would be a downward cascade causing that particular entire part of the

structure to vanish, leaving us with zero values for our Lagrange multipliers, which is of course

unacceptable. We may therefore conclude that this algebra does indeed grow quite fast.

In fact this algebra may be completely identified. It is the simplest contragredient algebra

of infinite growth, referred to as K2. In Chapter II of Ref. 14, Kac defines general contragredi-

ent algebras associated with a given matrix A with integer elements. They are integer-graded

algebras with certain requirements on the Lie brackets of the basis elements of the local part.

Let {fi}, {hi}, and {ei}, be basis vectors for G−1, G0, and G1, respectively. We first require

that their commutators satisfy the following:

[ei, fj ] = δijhi , [hi,hj ] = 0 , [hi, ej ] = Aijej , [hi, fj ] = −Aijfj (23)

The contragredient Lie algebra is then the minimal graded Lie algebra, with local part Ĝ.

(Beginning with any algebra generated by this local part, finding the largest homogeneous
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ideal that contains no elements of G0 (except 0) and then factorizing the algebra over this

ideal will create the minimal one.) In the special case that the matrix A has its diagonal

elements positive (usually normalized to +2), its off-diagonal elements non-positive, and all

Aij = 0 ⇔ Aji = 0, for i 6= j, then it is called a generalized Cartan matrix.

For our problem, we may now consider a contragredient algebra with matrix A such that

A =
(

1 1
1 1

)
. (24)

Our 3 sets of basis vectors are {h1, h2}, {e1, e2}, and {f1, f2}, so that [hi, ej ] = ej , etc., for

i, j = 1, 2. Therefore, we see that (h1 − h2) is central, so that we may factor our algebra by it.

The resulting algebra is K2, except that Kac normalizes his vectors so that all the elements of

A have the value 2 instead of 1. K2 is now easily seen to be isomorphic to the prolongation

algebra we have determined for the RT equation of type III, with Z → h1 (mod h1 − h2).

Having determined the smallest prolongation algebra, the next step in the process of find-

ing new solutions is to write down explicit vector- field (or matrix) realizations of this algebra,

use the variables in the carrier space as pseudopotentials, pick out a Bäcklund transformation,

take the one existing solution, and begin to generate new ones, as has been done many times

before with many other interesting pde’s. The difficulty, in this case, is that no realizations

of K2 have yet been discovered. Since this is indeed the minimal prolongation algebra, we

see that there is considerable correspondence between the two problems. It seems reasonable

to suppose that finding new solutions is equivalent to evolving realizations of this algebra.

Therefore, the main purpose of this report is to encourage its listeners to try to achieve at

least some non-trivial realization of K2.
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Appendix I: Other Choices of Generating Ideal

We have found it convenient to use a symmetric choice for the generators of our subideal

of the complete, restricted contact module. Other particular choices of ideal may generate

distinct maximal algebras [20,21]; nonetheless we now show that other plausible choices do

not actually change the minimal algebra involved in the prolongation process for this pde.

The sine-Gordon equation is very similar to our equation, simply not involving explicitly the

independent variables. Our symmetric ideal is actually modelled on that used by Shadwick [22]

for the sine-Gordon equation. On the other hand, many other authors, including in particular

Hoenselaers [8], have used an ideal for the sine-Gordon equation that is asymmetric, and

contains fewer generators. These two actually constitute all the reasonable choices one can

make [23].

Following Hoenselaers’ model [8], an alternative ideal would have the following generators:

(du− p dx) ∧ dy , dp ∧ dx + 1
2 (x + y)e−2u dx ∧ dy . (A1.1)

Since this does have both fewer generators and fewer variables, not using q, than the one we

described in Eqs. (6), one could indeed hope for “nicer” results. Following the same procedure

as before, the analogue of Eqs. (7) is quickly found to be

F = F(x, y, p) , G = G(x, y, u) ; λ1 = Gu , λ2 = Fp ,

[F + ∂x,G + ∂y] = −pGu + 1
2 (x + y)e−2u Fp .

(A1.2)

Introducing the new quantity P ≡ G+ 1
2Gu, reduces the commutator equation in Eqs. (A1.2)

to the simpler form [F + ∂x ,P + ∂y] = −pPu. The general solution can be worked out in an

analogous fashion to that shown in Ref. 21; however, by first taking two successive derivatives

with respect to p, resulting in [Fpp ,P] = 0, we can pick out the smallest interesting piece

of it, again in a manner analogous to Ref. 8, by simply setting both the objects in this last

commutator, separately, to zero, which gives us

F = pA + B , G = e−2uC , (A1.3)

where {A,B,C} all depend on both x and y, but with no necessity for dependence more

complicated than linear. Inserting these forms back into the original commutator equation

produces the following results, with the u-dependence already completely satisfied:

Ay = 0 = By ; [A ,C] = 2C ; Cx + [B ,C] = 1
2 (x + y)A . (A1.4)
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Expanding each of these vector fields as first-order polynomials, in the form

A = 2A0 + 2xA1 , B = B0 + xB1 , C = C0 + xC1 + yC2 , (A1.5)

we easily calculate the commutators required, and find that linear independence of our Lagrange

multipliers insists that the set {A0,B0,C0,C2} must remain linearly independent, and of

course non-zero. There are two plausible special cases of interest here: Case 1 sets A1 = 0 =

B1, while case 2 sets A1 = 0 = C1. For case 1, we have 5 generators, with all but 4 of the 10

commutator products already determined. We present the commutators in the form of a table,

and do not bother to indicate the lower-triangular portion since it is of course skew-symmetric:

A0 B0 C0 C1 C2

A0 0 C0 C1 C2

B0 0 −C1 A0 A0

C0 0

C1 0

C2 0 (A1.6)

The 4 omitted entries in the upper-triangular portion must still be determined. Taking A0 as an

element in the Cartan subalgebra, G0, we see that all of Ci constitute positive roots, but there

are no immediately-determined negative roots. A plausible “cure” for this is to identify the

undetermined commutator, [A0 ,B0] as a negative root; i.e., to assume that [A0 , [A0 ,B0]] =

−[A0 ,B0], consistent with the Jacobi identity. Another identification that reduces the number

of unknown commutators in a manner consistent with the Jacobi identity is to identify C1 =

C2; this has the obvious justification that it causes C to depend only on x + y, just as does

the pde itself. At this point, the entire algebra—with the notable exception of B0—can be

identified with (our version of) K2 again, using the contragredience matrix A given by Eq. (24):

A0 → h , C0 → e1 , C1 = C2 → e2 , [A0 ,B0] → f2 , [B0 , [A0 ,B0]] → f1 . (A1.7)

Since B0 is a subalgebra, we may then identify the algebra at this point with the semi-direct

sum of K2 and {B0}, which is satisfactory for our current purposes. (See the related result in

Appendix II.)
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Following case 2 equally far, F depends only on x (and p) while G depends only on y (and

u), as was the case for the symmetric ideal already discussed. Again we have five generators

with only six of the commutators already determined. The known commutators are

A0 B0 B1 C0 C2

A0 0 C0 C2

B0 0 0 A0

B1 0 A0 0

C0 0

C2 0 (A1.8)

The 4 omitted entries in the upper-triangular portion must still be determined. Taking A0

as an element in the Cartan subalgebra, G0, we see that the Ci constitute positive roots,

but there are no immediately-determined negative roots. A plausible “cure” identifies the Bj

as negative roots, thereby determining two of the previously-unknown commutators. This is

consistent with the Jacobi identity and directly identifies the algebra as K2, with matrix A

given by Eq. (24):

A0 → h , B0 → −f2 , B1 → −f1 ,C0 → e1 , C2 → e2 . (A1.9)

Therefore, this ideal also always leads to algebras of infinite growth, certainly containing K2.
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Appendix II: Other Choices of {x, y}-dependence

Following Eqs. (9), we considered further only the special case where Fy = 0 = Gx,

resulting in Eqs. (10), which were much simpler. However, the alternative set of assumptions

is also viable and justifiable, i.e., setting Fx = 0 = Gy. We argue that this is reasonable since

these particular derivatives never appear, explicitly, within Eqs. (9). At this point the first two

of Eqs. (9) each have the form of a vector-field-valued pde which is somewhat more complicated

than simply the usual flow equations. However, since the derivative operator acting on either

one of the (to-be-determined) vector fields gives exactly zero when operating on the other—due

to the assumptions just made—we can actually still manage to integrate these equations, the

solution to which we describe below in the following terms.

Lemma: Solution of the pde
[
A, R

]
= Ax + Ru.

We suppose given two vertical vector fields, A and R, elements of the Lie algebra of

vector fields over the space W of our pseudopotentials. As these lie in the tangent bundle to

fibers over J (2), they also depend on two disjoint sets of other variables, say A = A(x, y) and

R = R(u, v), and are required to satisfy the pde

[
A, R

]
= Ax + Ru , (A2.1)

where as usual the subscripts indicate partial derivatives. The solution is determined by

first differentiating the equation with respect to, say, x, which annuls the derivative of R,

providing a flow equation for Axx along R, which we integrate, taking proper care of the

fact that while the general form of R depends on both u and v, Axx depends on neither

one. We then differentiate with respect to u, and follow an analogous procedure for Ruu. The

general solution is then obtained by substituting back into the original equation and making all

“constants of integration” behave properly. That solution is determined by the sets of vector

fields A0(y) ≡ ∑∞
m=0

ym

m! A0m and R0(v) =
∑∞

k=0
vk

k! R0m, and the field A10 or R10, which are

related symmetrically by A10 −R10 = [R00 ,A00], such that

A(x, y) = A0(y) +
∞∑

m=0

(−x)m+1

(m + 1)!
(adR00)

mA1(y) , with A1(y) ≡ R10 + [R00, A0(y)] ,

R(u, v) = R0(v) +
∞∑

k=0

(+u)k+1

(k + 1)!
(adA00)

kR1(v) , with R1(v) ≡ A10 + [A00, R0(v)] ,

(A2.2)

along with a collection of requirements on the commutators of these vector fields, which are

most easily expressed by setting Am+1(y) as the (m + 1)-st term in the expansion, in powers
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of x, of A(x, y), above, and Rk+1(v) as the (k + 1)-st term in the expansion, in powers of u,

of R(u, v) The entire collection of constraints is then easily stated as the quadruply countable

set: [
Am+1(y) ,Rk+1(v)

]
= 0 ∀ k,m = 0, 1, 2, . . . . (A2.3)

We now apply this lemma to the two appropriate equations, in Eqs. (9). The second

of these equations involves B(u, y) and Z(x, y), so that the y-dependence overlaps, but is

“irrelevant” for this particular pde. Choosing to use only X10, our lemma provides us with

new vector fields, R(y), X0(y), and X1(y), such that

B(u, y) = eu(ad X0) R(y) +
∞∑

m=0

um+1

(m + 1)!
(adX0)

m X1(y) ,

Z(x, y) =X0(y) +
∞∑

`=0

(−x)`+1

(` + 1)!
((adR))` X1(y) ,

(A2.4)

along with the commutator requirements that

[
(ad R)`+1X0 , (adX0)

m(X1 + [X0 , R])
]

= 0 , ∀ `,m = 0, 1, 2, . . . . (A2.5)

The same lemma applied to the first equation, involving C(u, x) and Z(y, x), gives us the

existence of vector fields S(x), Y0(x) and Y1(x) such that

C(u, x) = e−u(ad Y0) S(x) +
∞∑

n=0

(−u)n+1

(n + 1)!
(adY0)

m Y1(x) ,

Z(y, x) =Y0(x) +
∞∑

`=0

(−y)`+1

(` + 1)!
(adS)` Y1(x) ,

(A2.6)

along with the commutator requirements that

[
(adS))`+1 Y0 , (adY0)

n (Y1 + [Y0 , C0])
]

= 0 , ∀ `, n = 0, 1, 2, . . . . (A2.7)

The requirement that Z(x, y), as presented in Eqs. (A2.4) and (A2.6), should be the same

is a very strong constraint on the underlying vector fields. A term-by-term comparison is, in

principle, required. For instance, the lowest-order requirement is that Y(x) and X(y) should

be related as follows:

Y0(x) = Z0 +
∞∑

`=0

(−x)`+1

(` + 1)!
(adR00)

` X10 , X0(y) = Z0 +
∞∑

`=0

(−y)`+1

(` + 1)!
(adS00)

` Y10 , (A2.8)
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while we could also write out the requirements on Y1(x), X1(y), etc. These requirements

would then have to be inserted into the shapes for B and C. While we have indeed written

out yet much more general series of equations for this problem, we nonetheless feel justified at

this point to append to these equations some additional assumptions that simplify the problem

enough to be presented with only a finite amount of formalism. Therefore, at this point, we

consider only the case when Z is completely independent of both x and y, thus reducing all

the expressions for Z above to a single term, which we will refer to as Z0, a vector field defined

only over the fiber variables, wA. As well, we again assume that it is reasonable to truncate

the series for R(y) and S(x) to make them first-order polynomials:

R(y) = R0 + yR1 , S(x) = S0 + xS1 , (A2.9)

Insertion of Eqs. (A2.4, A2.6) and (A2.9) into the remaining portion of Eqs. (9) gives us

a collection of requirements on the vector fields already named, i.e., {Z0,R0,R1,S0,S1}, as

well as additional ones which involve repeated commutators with Z0 that have not yet been

named. We first list all the requirements that follow when one evaluates at u = 0, therefore

involving only those vector fields just named above:

R0 R1 S0 S1 Z0

R0 0 R1 − S1 Z0 +T0

R1 0 Z0 0 +V0

S0 0 −U0

S1 0 −W0

Z0 0 (A2.10)

The quantities in the last row and column are new quantities, that will be needed at higher

powers in u, which we now define generically, ∀n = 0, 1, 2, . . . :

Tn ≡ (−1)n(adZ0)
n[Z0 , R0] , Vn ≡ (−1)n(adZ0)

n[Z0 , R1]

Un ≡ (adZ0)
n[Z0 , S0] , Wn ≡ (adZ0)

n[Z0 , S1]

X`p ≡
[
T`, Vp

]
, Ymn ≡

[
Um, Wn

]
. (A2.11)

The quantities in the last line are not determined by the requirements of the equation; however,

we will show below that it does not permit them to vanish, so that we now give them names.
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The rest of Eqs. (9) requires two additional sets of commutators involving these new

quantities. The first set involves the mixed commutators




Tn Vn Xnp Un Wn Ynp

Z0 −Tn+1 −Vn+1 Xn+1,p + Xn,p+1 +Un+1 +Wn+1 −Yn+1,p −Yn,p+1

R0 −Wn Z0

R1 Z0 0 Wp+1

S0 −Vn Z0

S1 Z0 0 −Vp+1




,

(A2.12)

while the second set describes the commutators between the higher-level ones, themselves:




Tn Vn Un Wn Xnp Ynp

Tm Xmn 0 −Z0 +Un+1

Vm −Xnm −Z0 0 −Wp+1

Um 0 +Z0 Ymn +Tn+1

Wm +Z0 0 −Ynm −Vp+1

Xmk −Tm+1 +Vk+1 2Z0

Ymk −Um+1 +Wk+1 −2Z0




, (A2.13)

The structure above is of course still frightfully complicated; therefore one surely wonders

how much of it is “necessary.” The Lagrange multipliers supply the answer to at least part of

that question. Referring back to Eqs. (7), within the current notation they are simply the three

vector fields {Z0 , T0+y V0 , U0+xW0}. Considering that
[
Xmk, Ynp

]
= +2Z0, independent

of the values of the indices {m, k, n, p}, we immediately see that none of those undetermined

double commutators Xmk, nor Ynp, may vanish. However, if any of the individual terms within

our three vector fields were to vanish, then one or more of these double commutators would

indeed have to vanish, therefore requiring us to maintain, at the least, all 5 of those vector

fields non-zero and linearly independent.

As a first approach to studying this structure, we go to a very simplified homomorphic

image which we name RT 0. The mapping is generated by dropping the subscripts on the

newly-created quantities:

Tn −→ T0 ≡ T , Vn −→ V0 ≡ V

Un −→ U0 ≡ U , Wn −→ W0 ≡ W
, ∀n = 0, 1, 2, . . . ,

Z0 −→ Z ,

(A2.14)
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where Z0 → Z is just to make the typography all appear more consistent. (This is also a useful

place to point out that if the second-order terms in x or y had been kept, all their commutators

would now be either zero or undetermined, thus motivating our having already dropped them.)

We should perhaps also mention that a somewhat more complicated mapping does not work,

namely one where Tn might have been mapped to (aT )nT, for some constant aT . In fact, such

quantities ai are completely determined by the requirement that this mapping actually be a

homomorphism.)

Our algebra RT 0 is generated by {Z,R0,R1,T,V,S0,S1,U,W,X,Y}, and the new Lie

product table is just obtained by ignoring the subscripts in the previous tables. Using those

tables, we note the existence of a very interesting subalgebra contained within RT 0, namely

the one where we drop out the {Ri ,Sj}. This subalgebra is generated by {Z,T,V,U,W},
and we will refer to it as RT 00. Remembering that it will also have X and Y as elements, the

appropriate commutator table is

RT 00 :




Z U W T V X Y

Z 0 U W −T −V −2X +2Y

U 0 Y 0 Z T

W 0 Z 0 −V

T 0 X U

V 0 −W

X 0 +2Z

Y 0




. (A2.15)

Since none of these elements is allowed to vanish, this is the fundamental subalgebra within

our general prolongation structure. It is isomorphic to the contragredient algebra of infinite

growth, K2, described in the main text, as given by

h −→ Z , e1 −→ U , e2 −→ W , f1 −→ V , f2 −→ T . (A2.16)

The subalgebra RT 00, isomorphic to K2, is however not the entirety of RT 0, which also

contains the generators Ri and Sj . It is straight-forward to show that simply mapping them

to zero will not work; i.e., the requirements of the Jacobi identity will cause the structure to

collapse sufficiently far that it “forgets” the original pde. In an attempt to better understand

the function of these objects, we look for linear combinations of them which are “eigenvectors”

of Z, and find that the four new combinations A ≡ R0 + T, B ≡ S0 − U, M ≡ R1 + V,
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and N ≡ S1 −W all commute with Z. The requirements of the Jacobi identity and also the

requirements of the Lagrange multipliers do not prevent us from setting M and N to 0, which

we therefore do. On the other hand, taking the remaining two, A, and B, as generators in

lieu of the original R0 and S0, respectively, we find that A + B is a central element, while

neither A nor B occur in the commutator ideal. We may therefore rescue the “rest” of the

algebra by ignoring that central element, and viewing this algebra as the semi-direct product

of K2 and the algebra consisting of the single element A. We maintain the mapping as given

in Eq. (A2.16) and append to it the commutation relations with A, as follows:

[A,h] = 0 , [A, e1] = 0 , [A, e2] = −e1 , [A, f1] = +f2 , [A, f2] = 0 , (A2.17)

and can present the prolongations of the total derivatives in the form

F = ph + A− e−u(f1 + y f2) , G = −qh−A + e−u(e2 + xx1) , (A2.18)

which should be compared, for instance, with the result in the main text, at Eqs. (17).

The form of F and G given in Eqs. (A2.18) is clearly different from that in Eqs. (17); One

would argue that this is not surprising since they correspond to two distinct sets of assump-

tions concerning the dependence of the prolongation quantities on the independent variables.

However, it turns out that the two sets are in fact equivalent under a gauge transformation.

From the viewpoint of Eq. (3), the quantities F and G are prolongations of the total deriva-

tives on J∞ to the (larger) covering space J∞ ⊗W . Moreover, the so-prolonged derivatives

only commute when one restricts the calculation to the subvariety defined by the pde being

studied. Therefore it is reasonable to treat the quantities FA dx + GA dt as (the coefficients

of a Lie-algebra-valued) connection 1-form on the covering space. Therefore, it should trans-

form in the usual way for connections. The transformations we want to consider correspond

to flows of the covering space generated by particular tangent vector fields, so that we are

simply moving along a congruence of curves. Moreover, since we are restricting our attention

to vertical vector fields, different values of a parameter along the curves just correspond to

different choices for values of the fiber coordinates over the same base point. (See Refs. 21 or

24 for considerably more discussion concerning this idea.) The structure of our theory should

be independent of distinctions such as this; therefore, we refer to transformations of this type,

which simply map different explicit presentations of the underlying geometry into one another,

as gauge transformations. Given a vertical vector field, R, defined over some (local) portion

of our manifold, the flow of that vector field is a (local) mapping of the manifold into itself,

17



that can be presented via a congruence of curves, described by Φt ≡ etR : U ⊆ M → M .

Under the induced mapping of the tangent bundle, the transformation law for an arbitrary

connection 1-form, Γ, would be

Γ′ ≡ Γt = et(ad R)Γ− d(tR) . (A2.19)

For our particular transformation, we will choose the vector field R, above to be our

“extra” algebra element, A, and the flow parameter, t, as x−y. Performing the transformation

on the F and G given in Eqs. (A2.18), we find that the so-transformed quantities, F′ and G′

are in fact identical to the ones given in Eqs. (17):

F′ ≡ e(x−y)(ad A)F−Dx{(x− y)A} = +ph− e−u(f1 + xf2) ,

G′ ≡ e(x−y)(ad A)G−Dy{(x− y)A} = −q h + e−u(e2 + ye1) .
(A2.20)

Since A is a vertical vector field, this transformation simplify re-defines the origin in our fiber

spaces in a manner that depends explicitly upon the value of the independent variable x− y.

This transformation has two immediate effects. It was chosen to remove the vector field A

from the presentation for F and G. As well, it has switched the x- and y-dependence of F

and G. Of course an arbitrarily chosen dependence of the connection on A would not have

allowed one to remove it. That this was possible shows that the explicit dependence of F and

G on the independent variables was in fact gauge-dependent.
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formations, Mathematical Physics Studies, Vol. 1, Reidel, Dordrecht, 1979.

21. J. D. Finley, III and John K. McIver, “Infinite-Dimensional Estabrook-Wahlquist Prolon-
gations for the sine-Gordon Equation,” J. Math. Phys., 36, 5707-5734 (1995).
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