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We extend our previous analysis of vibrational propagation in a chain of nonlinear
oscillators to obtain explicit expressions for oscillator displacements and mean-square-
displacements of the vibrational excitation for optical dispersion and study the effects
of the interplay of initial conditions with nonlinearity.

1. Introduction and the model

In a previous paper [1] (hereafter referred to as I)
we analyzed vibrational propagation in a chain of
nonlinear oscillators. The motivation was, in part, the
desire to understand thermal conduction [2-5] in un-
usual materials such as boron carbides. Encouraged
by the quantitative success of a preliminary analysis
[6] we carried out in explaining a part of the thermal
observations on boron carbides, viz. the flat tempera-
ture-independent behaviour of the thermal conductiv-
ity of B4C, we undertook in I an investigation of the
nonlinear dynamics of a system involving interactions
between two kinds of oscillators (“optical” and
“acoustic”) whose characteristic times differ signifi-
cantly. The analysis in I was carried out with the
help of several simplifying assumptions. We relax
some of those assumptions in this paper and thereby
extend that analysis to more physical systems. As in
1, our results here represent some simple aspects of
the transfer of vibrational excitation in a specific non-
linear model rather than being directly applicable to
the thermal conductivity problem which motivated
the investigation.

As in I, the model considered is a chain of alter-
nating masses m; and m, connected by identical
linear springs, or one of identical masses connected
by alternating springs k, and k,, which is en-
riched by additional interactions between the optical

and acoustic vibrations. The system has the Hamil-
tonian

H=Y w,(x,X_4+ P Xp_4 %)
+3 Q (ugu_,+p,up_,u)
+3 A (ugt+u_g)Ix,? (1.1)

where all summations are over the modes g, the fre-
quencies and the mode coordinates of the optical
phonons are w and x respectively, the frequencies and
the mode coordinates of the acoustic phonons are
 and u respectively, p* and p* are the respective mo-
menta (or conjugate variables) of the two branches,
and w,, Q,, and 4, are all even in the wavevector
g. The last term in (1.1) denotes the nonlinear interac-
tion between the optical and the acoustic oscillators.
It increases the optical mode frequency by a term
proportional to the amplitude of the acoustic mode
and changes the equilibrium position of the acoustic
mode by an amount proportional to the square of
the amplitude of the optical mode. The time evolution
of the mode amplitudes x, and u, is given by

(d/dt?) x,+ 02 x,= — Ay @, (u,+u_g) X, (1.2)
(@A) u,+ Q2 u, = — A, Q% (13)

which, under the assumption that the frequencies
and Q are disparate in magnitude, reduces to the sin-
gle closed equation for the x modes:

(d2/d 1) x, + 02 X,— B, x,|x,2 =0 (1.4)
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where B,=2A] w,/Q,. As in I we continue to analyze

only “even initial conditions”, i.e. those in which x,
=x_, so that |x,/*> may be replaced by xZ, assume
(dx,/dt),_o=0, and denote (x,),_, by x_. The result

(see I) is the explicit solution

x, =x3sn(A t+ K |k, (1.5)
/2

K,= | d0(1—k?sin>0)~%, (1.6)
0

ky =(1/2g) [3B,(x)*1%, (1.7)

Ay =[wf —3B,(x)"]%, (1.8)

where sn is the Jacobian elliptic sine function and
K, is the complete elliptic integral of the first kind.
The argument of K, or the modulus of sn function
is given by (1.7).

The purpose of present paper is to relax two sim-
plifying assumptions of I and thereby explore further
the transport properties of the vibrational excitation
in chains of nonlinear oscillators. In the next section
we investigate the effect of optical dispersion on the
time evolution of the vibrational excitation propaga-
tion. In Sect. 3 initial condition effects are studied
through the calculation of the mean-square-displace-
ments for the optical dispersion relation. Concluding
remarks are presented in Sect. 4.

The first of the two assumptions we will modify
here is
B,=2f*w}(x)"? (1.9)
for the interaction term appearing in (1.4), (1.7) and
(1.8). The second is the dispersion relation

w,=w’sin 1q|. (1.10)
where w? is a constant. The purpose of making these
assumptions in I was to arrive, in the most economical
manner possible, at some essential consequences of
nonlinearity. However, the first of these assumptions,
which had been pointed out in I as being rather dras-
tic, suffers from the fact that knowledge of the initial
condition is preassumed in the interaction expression
(1.9) — alternatively, the system is changed (through
the prescription (1.9) for B)) every time the initial con-
dition is changed. In the present paper we remove
this shortcoming from the analysis. We take the inter-
action A, in the Hamiltonian (1.1) to be given, inde-
pendently of the initial condition, by

A=A Q, 0, (1.11)

where A is a constant. The resulting expression for
B, is
B,=2w} A% (1.12)
We will see that this generalization makes it impossi-
ble to get the extreme simplifications obtained in I
and modifies the results considerably for general ini-
tial conditions. However, for the limits of (i) the ini-
tially localized condition, wherein all masses in the
chain, except the one at site 0, are at rest and in
their equilibrium positions initially, with x,,(0)=4,, o,
and (i) the grating initial condition wherein the vi-
brational excitation is initially sinusoidal in space,
with x,, =x, cos{nm), nothing is changed with respect
to the previous analysis. The changes introduced for
intermediate initial conditions will be discussed in
Sect. 3.

2. Effects of optical dispersion

The other assumption made in I, viz. (1.10), is not
representative of the dispersion of optical vibrations
which x denotes. The acoustic dispersion of (1.10) was
assumed in I only for simplicity. As is well-known
[7], the exact dispersion for a system of identical
masses and alternating springs is

oy ={(G+V)+[1—2GV/G+V))

- sin(q/2)]"12) 2, @1)
w; ={(G+V)—-[1-Q2GV/(G+ V)?)
- sin?(g/2)]"7} " 2.2)

where the force constants for the alternating springs
are G and V, respectively. From (2.2) one can derive,
for the higher (optical) branch, the approximate dis-
persion

W, =W+ w, COS g (2.3)
under the condition

Wy > Wy (2.4)
where w, and @, are given by

wo=[2(G+V)]'? (2.5)
o, =GV/[2(G+ V)]*>. (2.6)

Throughout this paper we will assume the dispersion
relation (2.3) characteristic of optical vibrations rather
than (1.10) which describes acoustic modes.

In I we have derived the method to obtain the
time evolution of the displacement of the nonlinear
oscillators x,(f). The method carries through essen-



tially unchanged for optical dispersion. We first con-
sider the localized initial condition, i.e. x,,(0) =X, 6,0
where x, denotes the amplitude of the localized exci-
tation at time t=0. As in I, the displacement of the
nonlinear oscillators in real space can be constructed
through a superposition of an infinite number of the
solutions of the corresponding linear equation with
the replacement of the characteristic frequencies @
by the nonlinearly reduced frequencies . The coeffi-
cients in the superposition have the same form for
every term and depend only on the nonlinearity:

X () Xo=Y, R, cos(w} t) (— "2 I (Rr+ D) wlt)
, 2.7)

for m even and
Xu(t)/xo =Y R, sin(wf ) (= 1) V2 (2r+1) {1

r (2.8)
for m odd. Here, the reduction factor R, is given by
R,=(n/kK)(— 1y cosech((2r+ 1) (n/2)K'/K) (2.9)

K, K’ have their usual meanings in the context of
elliptic integrals, J, is the ordinary Bessel function
of order m, and @{ and w{ are the two frequencies
w, and @, reduced by the identical factor (n/2K)
(1 =% as a result of nonlinearity:

of{=w,([@/2K) (1 -f*)"? (2.10)
wh=we(n/2K)(1—f)/? (2.11)
f o =Ax, (2.12)

and, in the present case, the modulus k has the form

k=fL—f3'

We notice that the linear equation of motion in mo-
mentum space for the “approximate” optical phonon
branch treated above, which corresponds to the non-
linear equation (1.4), is

(2.13)

(d?/dt?) x,+(wo+ w, cos g)* x,=0 (2.14)

and is the Fourier transform of the equation of mo-
tion in real space given by

(d?/dt?) Xp+ 81 Xm— 82 (2Xm— Xm—1 = Xm+1)=0 (2.15)

where g, and g, are constants related to the spring
force constants in the linear vibrational chain. For
the initial condition x,(0)=x,d,, o this linear chain
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Fig. 1. Effects of optical dispersion and nonlinearity on the propaga-
tion of an localized vibrational excitation shown through a plot
of the time dependence of the displacement from equilibrium of
the initial excited site in Fig. 1. The respective displacement xo(t)
normalized to the initial value of x(0) is plotted along y-axis and
time is plotted in units of 1/w, along X-axis. Curve a shows the
extreme linear limit (f=0), curve ¢ shows the extreme nonlinear
limit (f=272), and curves b represents the intermediate value of
nonlinearity (f=0.7). The frequency w, is chosen equal to 0.5 and
wo equal to 5.0

problem with optical dispersion relation has the solu-
tion

xhin()/x o= cos(we 1) (— 1™ J{w, t) (2.16)
for m even and
xin (1) = x, sin(wq £) (— ™2 J, (w4 1) (2.17)

for m odd. Comparison with (2.7), (2.8) and (2.16),
(2.17) shows that nonlinearity has two effects as in
I: the reduction of the frequencies, here wq, @,, by
the factor (n/2K) (1—f2)"/* and the appearance of
the summation over r.

The solutions (2.7) and (2.8) of our nonlinear vi-
brational excitation problem are exact and plotted
in Fig. 1 where the displacements of the mass at site 0
are shown as functions of time t. The three curves
represent different nonlinearity. As in I, the effect of
the nonlinearity is to slow down the propagation of
the vibrational excitation. The new feature in the pres-
ent optical branch case is the appearance of two char-
acteristic frequencies: one describes “intercell” mo-
tion whereas the other describes “intracell” motion,
the “cell” being a pair of masses.

For the “grating” initial condition, ie. x,(0)
=X, cos(mn) in real space where 7 is a constant, and
x,(0)=x (8, ,+ 0, -z)/2 in momentum space, the time
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evolution of the displacement of the nonlinear oscilla-
tors are found to be

(2.18)
(2.19)

X (2)= (xo/m) cos(mn) sn(w’ t]k)
o =n/2K)(1—f?)"(wo+w, cosn)

where the nonlinearity parameter is again given by
f=Ax,. However, the symbol x, represents the grat-
ing amplitude here. The frequency reduction in (2.10)
is represented through the factor (1—f?%)"* and the
separation of the spatial evolution and the temporal
variation is shown here clearly. The linear counter-
part is

X (t)=(x0/7) cos(mn) sin[ (w,+ w, cosn) t] (2.20)
and is obtained as the limit of (2.18), (2.20) as kK — 0.

3. Initial condition effects

In our nonlinear model, the vibrational amplitude of
the gth mode has been found in (1.5)1.8) in Sect. 1.
We will now use the more physical expression (1.12)
for B, rather than (1.9). Then, (1.8) reduces to

Ao=w,[1 —Az(x;’)z]”2 3.1)
rather than to
Ag=,(1 —fHr? (3.2)

which was the consequence of (1.9), i.e. of the analysis
in I. Equation (3.1) contains the effect of initial condi-
tions on A,. The elliptic parameter k, in (1.7) now
has the form

ky=AX[1— A2(x2)2] 12 (3.3)

which is sensitive to initial conditions unlike the result
in 1, viz,,

kp=f(1—=f3) "

which is not. We notice that the quantity Ax] now
takes the place of the constant f. It is very clear that,
as state in Sect. 1, initial conditions have little inter-
play with nonlinearity when they are of the extreme
kind: localized as in (2.7) and (2.8) or grating as in
(2.18) and (2.19). We will therefore study an intermedi-
ate initial condition, viz. a Gaussian:

(3.4)

X0 =xo exp(—4%/5?) (3.5)

where ¢ is the width of the Gaussian, and x; is a
constant.

As in I, we define a “mean-square-displacement”
by

(m*y =3 m* [x,(1)/%,] (3.6)
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Fig. 2. Time evolution of the mean-square-displacement {x?(r)> for
the vibrational excitation for an initial Gaussian distribution. The
four curves indicate different nonlinearities: extreme linear limit
f=0 for a, extreme nonlinear limit f=2"%/2 for b, and two interme-
diate cases f=0.4 and f=0.7 for ¢ and d. The width o =10. The
values of w, and w, are the same as in Fig. 1

We find that from (1.5}11.8), (1.12) and (2.3) the Gaus-
sian initial condition gives
{m?y =((1 =" 0, —(2/a®) f (o + 1)) t—(2/0?) k?
~(1—f2) "2 F(ulk)) cn(ulk) dn(u|k)
+(2/a%) sn(u|k) 3.7
where the nonlinearity parameter f is given by f
=X, A, and the functions sn(u|k), cn(u|k) and dn(u|k)
are Jacobian elliptic functions with modulus

k=f/1—f3'"? (3.8)
and argument u given by
u=(wo+w)(1—f"?t+K, (3.9)

where K, is the complete elliptic integral given in
(1.6) with modulus k, replaced by k given by (3.8).
The function F (u]k) is defined as [8]

Fu|k)= j? dx{sin? x/[(1—k sin* x)]*? (3.10)
/2

where ¢ is given by

sin ¢ =sn(uk). 3.11)

By solving (2.14) directly, the mean-square-displace-
ment for the linear chain (2.15) may be written as

{m?y = —w, t sin[(wg+@,) ] +(2/0?)

- cos[(wo+wy)t] (3.12)

Equation (3.12) is seen to be recovered from (3.7) by
putting f=0.

The time evolution (3.7) of the mean-square-dis-
placement is shown in Fig. 2 where the 4 curves refer,
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Fig. 3. Effects of varying the width of the initial Gaussian on the
propagation of vibrational excitation. Curves a, b and c represent
¢=100, 6=5 and o =4, respectively. The nonlinear parameter f
is equal to 0.7 for all three curves. Other parameters are the same
as in Fig. 2

respectively, to the nonlinear parameter f being equal
to 0 (linear limit), 0.35, 0.7 and 27"/ (this is the ex-
treme nonlinear limit since k=1). The propagation
of the vibrational excitation in the nonlinear chain
is seen to have retained the features of the linear chain
(optical branch) that the mean-square-displacement
increases linearly and that it oscillates as time in-
creases. The shape of the curve for large nonlinearity
deviates dramatically from the sinusoidal function
characteristic of the linear case and represents the
shape of the elliptic function. The phenomenon that
the nonlinearity causes slowing down in the propaga-
tion of the vibrational excitation, which we have seen
in I, is seen in Fig. 2. If one examines the small-time
portion of the curve, however, the peak value of the
first peak (or the second or the third, etc) is seen
to decrease as the nonlinearity increases.

The effects of the Gaussian width ¢ on the propa-
gation of the excitation are shown in Fig. 3 where
the nonlinear parameter f is taken to be 0.7 for all
three curves. The curves a, b and ¢, referring to
=100, 5 and 4, respectively, describe the time evolu-
tion of the mean-square-displacement. It is well
known that the Gaussian distribution will become
a é-function when the real space width 1/¢ tends to
zero. The curve a shows this large o case. We find
that the straightforward effect of ¢ is the same as
that of the nonlinearity f: Larger ¢’s (more localized
initial conditions) reduce the short-time amplitude of
the mean-square-displacement, i.e., the mobility of the
quasiparticle.
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4. Concluding remarks

In the present paper we have extended the work done
in the paper I in two ways. First, the restriction on
the nonlinearity parameter B, made in (2.5) in I has
been relaxed to make it more general and not depen-
dent on the initial condition: see (1.11) and (1.12).
Second, the optical dispersion relation (2.3) is used
for the x-oscillators instead of the acoustic dispersion
relation (1.10) which was used in L. This replacement
is important in the light of the original motivation
for the investigation: at high temperature, heat carri-
ers are optical phonons. With those improvements,
and by means of the general methods described in
I we have obtained here explicit expressions for the
real-space displacement evolving in time for both lo-
calized and “grating™ initial conditions. We have also
given results for the mean-square-displacement for a
Gaussian initial condition and studied the effect of
initial conditions by varying the width of the Gaus-
sian. The results are given by (2.8) and (3.7).

The mobility reduction effect and the frequency
reduction effect caused by the nonlinearity which was
explored earlier in 1 are also seen in the present opti-
cal branch case. The new feature arising from the
optical dispersion relation is the appearance of two
characteristic frequencies, one of which describes the
intercell motion and the other the intracell motion.
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