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Abstract. We report quantum mechanical studies of an entity of importance in the dynamics
of the rotational polaren which arises in non-linear physics. The rotational polaron consists of
a particle such as an electron or exciton in interaction with an oscillator subject to a sinusoidal
potential which binds it to a ring. Our investigation focuses on the oscillater. Energy eigenvalues
and eigenfunctions are computed and related to those for a harmonic oscillator. The time
evolution under the action of a perturbing potential is also examined.

L. Introduction

In the study of non-linear excitations in condensed matter systems [1-6], an entity called
the rotational polaron has been introduced recently [5,6]. It is a rotational counterpart
of the ordinary polaren and has been shown [5,6] to exhibit curious features such as
saturation of self-trapping with increasing non-linearity, multiple stationary states, and
the counterintuitive disappearance of symmetry breaking on increasing non-linearity. A
rotational polaron consists of a quantum mechanical particle interacting with a rotational
oscillator, In the semiclassical approximation wherein the oscillator is treated classically, it
obeys the following equations of motion:

e =Y Vo + EBn)em (1.1a)

B + 2 F (0} + RE (O)|cm|? =0 (1.1b)

where ¢, and 8, are the amplitude of the particle and the rotational coordinate of the
oscillator at the mth site respectively, V., is the intersite matrix element describing transfer
of the particle, and € and R are measures of the restoring force and the moment of inertia
of the rotator, respectively. Equations (1.1) are generalizations of equations in which the
functions f and E are assumed linear in 6,. Among the several choices that have been
studied [5, 6], the simplest non-trivial one is

FOn) = (1/A) sin(Aby) (1.2q)

E(6,) = (Eo/A)sin(Al,) (1.2b)
with the limit of A — 0 giving the standard non-linear Schridinger equation {1, 3]

1w = 3 VinCrn + EoblmCnm (1.3a)

B + 20, + REglcw|? = 0. (1.3b)
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Existing results on the rotational polaron are based on a classical description of the
oscillator part of the Hamiltonian describing the rotational polaron. It is obviously of
interest to gencralize the description of the oscillator to include quantum mechanics. As
an initial attempt at this problem, we study in this paper the quantum mechanics of the
osctllator part alone, without paying attention to the moving particle. Such systems are
of interest also in the problem of liquid crystals [7]. We concentrate here on a single
oscillator consisting ol a quantum mechanical particle constrained to move in a ring bound
hy a sinusoidal potential. In scction 2, we present the equation of motion, indicate its
relation to that obeyed by a harmonic oscillator, and provide expressions which clarify the
relation, both in the context of the energy spectrum and the eigenfunctions. In section 3,
we investigate the time evolution of the system under the action of a perturbation and study
transitions analogous (o transitions between the number states of the harmonic oscillator
when a linear displacement is added to it. In section 4, we present concluding remarks.

2. Eunergy eigenvalues and eigenfunctions

We consider a particle constrained to move on a ring of length L and bound to a point on
the ring by a potential which is similar to a harmonic oscillator potential, and thus write
the equation tor the wavefunction v of the particle as

ARy metl? 2rx

(I—C()ST)Wzgw, 2.n

— +
2m dx? 42

Here the particle has mass m and energy £. In the [imit of large L, cquation (2.1) reduces
o the Schrédinger equation for a harmonic oscillator of frequency w, Equation (2.1) can
be written n the standard Mathicu form [8],

i (1 “‘) + L cose)y =0 (2.2)
dg? b =3 Y 5 cos(2pnf = .
where
& mX ; ImEL? miw?L* 2.3)
= — = — S=—— .
L hin? higd

It is generally known that there exist sets of values of & for which the solutions of (2.2) are
periodic with period nr where n is an integer [8-11]. Since the physics of our problem
demands solutions of (2.1) which arc periodic in x-space with period L, we restrict ourselves
to those Mathieu function solutions of (2.2) which are periodic in ¢-space with period .
1t 1s clear that, us the length L of the ring approaches infinity, the sinusoidal potential tends
to the harmonic oscillator potential, and (2.1) reduces 1o the familiar Schrodinger equation
for the harmenic oscillator. The spectrum of the latter is of course equidistant:

e =+ o a=0,1,.... (2:4)

It is of interest to obtain the general spectrum represented by (2.1) in the limit of large L.
As a meaningful dimensionless paramecter to be used in the required expansions, we sclect

E=s"" = (h/mw)(m/L) = 7 A/L)% (2.5)
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“““““““““““““ Figure 1. Comparison between the asymptotic
spectrum (2.6, 2.7} and the harmonic oscilfator spectrum
(2.4). The energies are in units of hw. The Mathieu
spectrum is marked by the solid line and the dashed
line denotes the harmenic oscillator spectrum. Note that

__________________ the ground state energies for the asymptotic Mathieu
Hamiltonian and the harmonic oscillator are practically
the same and therefore a single dashed line has been
used to show the coincidence of the two lines.

Except for the multiplying factor 72 the parameter £ is the square of the ratio of two
characteristic lengths of the system. The first is A = /A/me which is the amplitude
of the corresponding classical harmonic oscillator with a single quantum of the quantum
mechanical oscillator. The second is the periodic length L of the ring, Following the
method of [8}, we can now write from (2.1) the energy eigenvalues as represented by

X
En=EF —hw Y Gpet. (2.6)

k=1

We find the first few terms G in the expansion {2.6) to be

+1)°
G- 8t D
4
. DI+ 5+ 3] @7
2= 16 '
. 80+ D+ 1360+ D49
1T 210 '

Figure 1 shows the harmonic oscillator limit of the spectrum along with the corrections
we have obtained. One notices that the Mathieu spectrum starts out approximately
equidistant like the harmonic oscillator spectrum but the higher energy levels become more
closely spaced. It appears that the dominant correction to the oscillator potential coming
from the Mathieu cosine potential is proportional to —x*, and tends to flatten the harmonic
oscillator potential and thus make the energy levels more closely spaced.
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We now address the eigenfunctions through our comparative analysis. The
eigenfunctions fall into two categories: even and odd. In terms of an expansion in powers
of £ (2.5) these eigenfunctions are

2 y(Zn) y(zn)
CCZH(¢‘§)=C y(gn}+$““.li“ﬂ+§-2 2 oo

4
y(2n+l) y(2n+l) 28
Sezna(ep, £) = C [yéz”*” e — }
where
)"((}n) = H,
@ Hua  Huo  nn= DHean(n = 1) = 2)(n = 3)Hey
NE T 3 4 16
o _ Hus | B (0 DHys 07 <2504 16)Hy o
" EEn T T 6 64
nn — D(—n? —2Tn+ 10OH,_, n(n— 12 —Dn — HH,_, &
+ +
64 16
nin = D(n = D) = 3)n - 4 — HHys
)
nt— 1(n — 2)(n — 3)n — $(n — 5)n — 6)(n — TYH,_g
+ 512

where the H,, having the dimensionless length 5 = ~/2x /A as their argument are the
Hermite functions, which are the eigenfunctions for the harmonic oscillator, and C in the
RHS of (2.8) is a normalization constant. The above expansion can be shown [8] to be
good only for the first excited states, i.e. those whose spatial extent compared to A is much
smaller than the ratio of the characteristic lengths L/A. In the limit of large L /A we thus
see that we obtain the harmonic oscillator wavefunctions as the first term in the asymptotic
expansion (2.8, 2.9). The ground state and first excited wavefunctions are given by

Ceg(x) = Ce ™/
o (2.10)
Sea(x) = C)V P (x /e /2

Figure 2(a) shows the actual harmonic oscillator wavefunctions for the ground and first
excited states as well as the first-order corrections due to finite L/A. Specifically, L/
has been taken to be equal to 15. For comparison, we show in figure 2(b) the actual
oscillator wavefunctions alongside the Mathieu wavefunctions when L/A <« 10 so that
one is far away from the harmonic oscillator limit. In particular 5 has been taken to be
equal to 5 t.e. L/) = 4.698. One thus finds that in the harmonic oscillator limit, the close
similarity between the first few eigenfunctions of the Mathieu Hamiltonian and the harmonic
oscillator wavefunctions parallels the similar nature of the first few energy lines displayed in
figure 1. However from figure 2(b) one notices that especially for the first excited states, the
departure of the Mathieu eigenfunctions from the exact harmonic oscitlator wavefunctions
is quite enormous.
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Figure 2. (a) Compatison between the asymptotic Mathieu wavefunctions and the harmonic
oscillator wavefunctions for the ground and first excited states. L /X has been taken to be equal
to 15, The solid line shows the ground state Mathieu wavefunction and the line marked by bold
dots gives the corresponding harmonic oscillator wavefunction, whereas the line with fine dots
and the line with dashes mark the first excited state wavefunctions of the asymptotic Mathieuo
and the harmenic oscillator Hamiltonians respectively. (b) Comparison between the Mathieu
wavefunctions and the harmonic oscillator wavefunctions for the ground and first excited states.
s has been taken to be equal to five, i.e. L/X = 4.698. The solid line shows the ground state
Mathieu wavefunction, the line marked by bold dots gives the corresponding harmonic oscillator
wavefunction, and the line marked by fine dots and the dashed line denote the first excited states
of the Mathieu and harmonic oscillator Hamiltonians respectively.
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3. Perturbations

We now present some calculations relevant to the situation in which a perturbation is added
to the sinusoidal potential. This is analogous to applying a Hamiltonian perturbation linear
in the displacement to the harmonic oscillator potential. Using a generalization of such an
addition given earlier [12] in anharmonic contexts, the equation of motion can be obtained
as

R d*y meL? 2rx\ - WL | 2ax
I — — e —me?)—— = E
2mdx2+ 4l ( )‘/f 2 L v mw) 'l’ v
(3.1}

which can be written as

2 42 5272 _ :
Wdy %(1%05%)&:;% (3.2)

" 2m dx? + 45772

where the shift along the ring is A and the magnitude of the potential shift is such that in
the harmonic oscillator limit, the strength of the shift is ¥}, and

i | Avin? 4 o (27AY _ 2V, 33)
) = _— n = . .
U T meLet L matl

The Mathieu equation for the shifted potential then is of the form

dzw

a2 + W + - LO!: 20¢ — o)W =0 (3.4)
where

. 2mEL? . mPrLe TA

b= roee §= grvere g = h (3.5

and can be solved immediately by comparison to (2.2)-(2.4).

We can consider the Mathieu equations (2.2, 3.4) as eigenvalue problems with the
solutions, Ce(s, ¢), Se(s, ¢) and Ce(5, § — ¢g), Se(§, ¢ — ¢g) respectively, being looked
upon as their eigenfunctions with respective eigenvalues s/2 — be, 5/2 — bo and 5/2 — be,
$/2 - bo.

Let Hy and (s, ) denote the Hamiltonian and the wavefunctions corresponding
to equations (2.1) and (2.2) and let H and ¥,(5, ¢ — ¢o} label the Hamiltonian and
wavefunctions corresponding to equations (3.1) and (3.2). Then if the system is placed
initially in some eigenstate of the original Hamiltonian, ,, the wavefunction will evolve
under the action of the Hamiltonian H

Y, @, 0 =e " Fihy(s, ) (3.6)

equivalently expressed as

V(g ) =D fune STENAGG p— ) (3.7)
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where the overlap integral is

2r
Fon = fa a6 TG b — doVln(s, ) (3.8)

and the eigenstates have been normalized according to

w 2
f A, = 2mép f do Yy = 2 8mn. (3.9)
0 0

The probability that the system will be found at time ¢ in an eigenstate v, of the original
Hamiltonian is given by

2

Ppu(t) = (3.10)

Z Fonfr e—i(.\'/z—frm):/h
rm
m

The eigenstate r, (¢, s) can be written as an infinite sum of cosines or sines according to
whether the eigenstate is even or odd. We can then write the following expressions for the
overtap integral f,,:

(i) m even, n even: fun = »  AL(s)AS (§) cos 2kdy (3.11)
k
(ii) m odd, 1 even: fun =— A;;’(,Q)Eg;"’(s) sin 2k (3.12)
3
(iii) m even, n odd: fpn = — Z Béz)(s)ﬂ(z’:)(f) sin 2kgy (3.13)
k
(iv) m odd, # odd: frn = > B (s) B (F) cos 2egsy. (3.14)
k

Figures 3(a) and (b) shows the self-propagators and transition probabilities for s = 5 and
¢ = 0.3. One sees that the ground state propagator exhibits ringing much like what
one would see in a non-degenerate two-state system. The behaviour exhibited by the
self-propagators for the first and second exicted states has, on the other hand, far more
structure. This suggests that these states are connected to the rest of the manifold in a
more complicated way than the ground state. This may be for the following reason. In
the case of the harmonic oscillator the behaviour of the ground state under the action of a
linear perturbation is qualitatively different from the excited states because the ground state
is a coherent state. In the present rotational case, a similar thing could be occurring. The
ground state could be acting as a ‘coherent state’ for this problem, making its behaviour
completely different from that of the other states both in the case of the propagators and
the transition probabilities. The probability of transition from the ground to the first excited
states is similar to the behaviour one could expect between the states of a non-degenerate
two-state system, but the behaviour of the probability of transition from the first to second
excited states is very different.

In figure 4 we display the same quantities as in figure 3 but here we take the Mathieu
Hamiltonian to be in the harmonic oscillator limit and compare it with the exact oscillator
Hamiltonian, We find that the different probabilities approach the behaviour of the harmonic
oscillator.
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Figure 3. (a) Self propagators for the Mathien Hamiltontan when L/A <« 10. In particular,
y and ¢y given in (3.5) are taken to be five and 0.3 respectively. The solid line gives the
self-propagator for the ground state, whereas the dotted line and line marked with bold dots give
the propagators for the first and second excited states respectively. (b) Transition probabilities
for the same case. The solid line marks the transition probability between the ground and first
excited states and the dotted line denotes the observable between the first and second excited
states.
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Figure 4. (a} Comparison of the self-propagators for the first three states between the Mathien
functicns in the harmonic oscillator limit and the actual harmonic oscillator states. The solid
line, the line marked by dots and dashes and the line with fine dots denote the propagators for
the ground, first and excited states of the asymptotic Mathien Hamiltonian respectively whereas
the lines marked by circles, bold dots and light, fine dots denote the corresponding quantities for
the harmonic oscillator. {b} Comparisen of the transition probabilities between the states of the
Mathieu problem in the harmonic oscillator limit and the exact harmonic oscillator problem, The
bold dots and dotted line denote the transition probabilities between the ground and first excited
states and between the first and second excited states of the asymptotic Mathieu Hamiltonian
respectively whereas the line marked by circles and the dashed line denote the corresponding
quantities for the harmonic oscillator Hamiltonian.
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4. Concluding remarks

We have analysed the problem of a single oscillator bound by a sinusoidal potential on
a ring and have explored its relation to the problem of a quantum mechanical harmonic
oscillator. We have shown that the Mathieu Hamiltonian approaches its harmonic oscillator
limit smoothly in the behaviour of the spectrum, the shape of the wavefunctions and
the evolution of transitions between the states of the Hamiltonian on application of a
perturbation. With this as a starting point, work on incorporating an interaction of a
quantum mechanical excitation with the oscillator stndied here is currently under way with
applications to rotational polarons and liquid crystals. A few comments concerning the
physical significance of the system might be relevant. Liquid crystals consist of partially
ordered aggregates of molecules possessing directed shapes such as rods or discs [7]. A
rod-like molecule can perform oscillations around its equilibrium direction. If an electronic
excitation or an electron interacts strongly with this oscillation such that the presence of the
excitation or charge affects the equilibrium direction of the molecule, the composite system
is a rotational polaron,

The transport of the excitation or charge will be significantly affected [5] as a result of
the strong attraction. Because the osciilation coordinate possesses a limited range (since it
is an angle rather than a translational coordinate) novel physical effects such as saturation of
non-linearity can occur. The present paper constitutes a beginning step in a fully quantum
mechanical study of such phenomena.
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