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Thermal runaway during microwave heating in ceramic materials has been explained
recently in terms of a microscopic model involving a nonlinear feedback between micro-
wave absorption and heat dissipation. We study here an alternate model of thermal run-
away which is based on the temperature dependence of the thermal conductivity of the
material being heated. If the thermal conductivity decreases as the temperature in-
creases, a decrease could occur in the removal of heat from the central regions of the
sample which, unlike the surface, cannot cool off quickly through processes such as ra-
diation. The result would be an enhanced heating of the central regions and a further
decrease of the thermal conductivity thus providing a feeback loop. A quantitative ana~
lysis of these concepts is provided.

1. Introduction

There has been considerable study in recent years of the interaction of microwave radia-
tion with ceramic materials [1—12]. This interest has been driven by interest in the
possibility of sintering ceramic powders through the uniform heating which occurs with
microwave irradiation. An interesting but undesirable feature often associated with mi-
crowave heating is the phenomenon of “thermal runaway”, wherein a sample subjected
to a constant source of microwave power will be observed to exhibit a slow rise in tem-
perature for a considerable period of time, after which the temperature will suddenly be
observed to increase at a more rapid rate, ultimately destroying the sample.

A recent theory of thermal runaway constructed by Kenkre et al. [6—12] is based on
the possibility that the material contains a species of absorber (such as vacancies, biva-
cancies, or interstitials), which can be in one of two regions of states: a free region which
can absorb strongly from the microwave field, and a bound region in which the absorp-
tion is negligible. Microwave heating is shown in that theory to transfer absorbers from
the bound region to the free region. This results in heightened absorption, enhanced
heating, and consequently further transfer of absorbers to the free region, thereby re-
peating the cycle. That theory has been quite successful quantitatively, particularly in
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its ability to model the dynamics of the runaway process. It is, however, a dynamical
theory that studies the time dependence of the heating process “in the bulk” and is, in
its present form, incapable of addressing the spatial dependence of the runaway phenom-
ena. As such, it is unable to predict a prominent feature observed in many samples
which have undergone thermal runaway, namely, the way in which the destruction of
the sample appears to be initiated in the interior regions.

In this paper, therefore, we investigate an alternate mechanism which may contribute
to the phenomenon of thermal runaway, and in the process present an analysis that
allows investigation of the spatial dependence of the thermal profile in the sample. Speci-
fically, we address the question as to whether thermal runaway could result solely from
a decrease in the thermal conductivity of the sample with increasing temperature. Physi-
cally, we envision that microwave heating of the sample produces a continuous and uni-
form source of heating throughout. If the sample is to reach a steady-state temperature
distribution, the net heat per unit time into the sample must equal the flux of heat out
through its surface. Heat created in the interior must obviously migrate to the surface
before it can escape. Because of the uniform heating which occurs during microwave
absorption, however, the temperature in the interior is elevated with respect to that of
the surface. If the thermal conductivity decreases with increasing temperature, then it
follows that the thermal conductivity may be lower in the interior than near the surface.
This would decrease even further the ability of the internally generated heat to leave the
interior. Such a mechanism would then serve to further increase the internal tempera-
ture and, in turn, lead to a further decrease in the thermal conductivity. This is the
feedback mechanism which we investigate as a possible source of thermal runaway. Our
investigation reveals that this mechanism alone is probably not the major cause of ther-
mal runaway observed in most ceramics. Nonetheless, it could, when combined with the
mechanism proposed by Kenkre et al. [6—12], be a significant factor in determining the
critical parameters associated with the runaway process.

2. Formulation of the Model

Consider a spherical ceramic sample of radius R exposed to a continuous source of
microwave radiation. The skin depth at the radiated frequency is assumed to be large
compared to the size of the sample. As a result, power is uniformly absorbed from the
radiation field and converted into heat in the interior. The temperature T'(r,t) at a
distance r from the center of the sample evolves in time due to the continuous ab-
sorption and diffusion of heat throughout. Its evolution is given by the radial heat equa-
tion
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represents the uniform heating rate associated with the microwave field, and
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In these expressions P is the power density of the radiation field, and £ is the absorp-
tion coefficient, o the mass density, C, the specific heat, and » the thermal conductivity
of the ceramic. The last term on the right-hand-side of (1) describes the heat lost
through the surface due to radiation. In general, we expect a variation with temperature
(and therefore position) of both the heating rate (due, e.g., to changes in the absorption
coefficient) and the thermal conductivity. In what follows, however, we are interested in
investigating the possibility that thermal runaway could result primarily from the varia-
tion of the parameter k = k(T") = k[T'(r)] associated with the thermal conductivity, and
so ignore any temperature or spatial variation of the absorbed power f.

If a steady state temperature distribution is eventually reached, it will obey the equa-
tion obtained by setting the left-hand side of (1) equal to zero. To obtain this steady-
state distribution it suffices to solve the homogeneous steady-state equation

d , dT
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along with the boundary condition
dT
= lim { ~k — ) = oT*
Jo() = lim (~ 57 ) = oT(R), (5)

which accounts for heat loss at the surface. We also impose regularity of the tempera-
ture field at r = 0. Specifically, the lack of any concentrated heat sources or sinks at
7 = 0 means that the heat flux out of the origin must vanish; hence Jg(0) = 0.

On integrating Eq. (4) and applying the boundary condition at r = 0 we find that

dT fr
Jo(r) =~k - =% (6)

from which the surface temperature Tg = ( fR/30)1/ * is obtained by applying boundary
condition (5).

We now introduce an invertible function g(T') related to the thermal conductivity
through the relation

KT) = j—; . (M

It is convenient to specify g(T') explicitly as
g
9(T) = — [ K(T")dT' (8)
T

where @y is a (presumably large) reference temperature beyond which the properties of
the material are adversely and irreversibly altered, leading to damage of the sample. The
assumption that g(T) is invertible simply means that there exists a function 6(g) such
that T = 0[g(T")]. Insofar as k(T') is a known function for any given material, the con-
struction of suitable functions g(T") and 8(g) imposes no difficulty. We observe that g,
like %, defines an implicit function of r, i.e., g = g[T'(r)]. The radial derivative of g(r) can
therefore be written

dg_dng_de
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which allows us to rewrite Eq. (6)

dg fr

= =L 10

dr 3 (10)
in terms of the function g(r). Solution of this equation gives the function

f

9(r) = gr+ 5 (B2 =17, (11)

where gr = g(Tr)- This gives the steady-state temperature distribution

T(r) = 6lgr + -g (R? —r)]. (12)

3. Conditions for Thermal Runaway and Discussion

In applying the analysis presented above to the phenomenon of thermal runaway, we
argue that the characteristic signature of thermal runaway is a steady-state tempera-
ture distribution which at some points exceeds the characteristic temperature 6y at
which the material is destroyed. At sufficiently low heating rates, the temperature at
the surface will be less than this characteristic temperature and so, from (8), the
function g(T) will be negative when evaluated at the surface temperature
Tr = (fR/30)/*< 6y. As we move in from the surface, the temperature increases and
the argument of the decreasing function @[g(r)] has the possibility of vanishing at
some finite critical radius

ro= B2 - 6—'}‘@-', (13)

provided that the second term in the radical is smaller in magnitude than the first.
According to (8) such a vanishing of g(r) corresponds to a point inside of which the
temperature exceeds the critical temperature 6y. Thus, we argue, thermal runaway oc-
curs whenever

fR?

>1. 14
6 |gr| (1)

In what follows we consider two mathematical forms for the thermal conductivity which
illustrate the way in which thermal runaway can occur. The first example describes a
hypothetical system in which the thermal conductivity decreases exponentially with tem-
perature. With such a rapidly decreasing form, thermal runaway can occur no matter
how large the critical temperature 6y, provided that the sample size or microwave power
is sufficiently large. It is worth noting that the incorporation of anharmonic effects in
the Debye model leads to the prediction of an exponential decrease of x with tempera-
ture over an intermediate temperature regime fp > T > 0, where 0p is the Debye tem-
perature [13, 14]. While this provides some justification for consideration of this expo-
nential model, at the elevated temperatures at which runaway and destruction of the
sample occurs (for which T > 6p) the same model predicts a power law decrease with
temperature of the form k ~ 77!, and observations on many crystalline materials are
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consistent with a high temperature decrease of the form?) k~ 7% with 2 > s> 1.
Thus, in the second model discussed below we consider the situation in which the ther-
mal conductivity decreases according to a power law. We find that for s > 1 thermal
runaway can always occur for sufficiently high heating rates, as with the exponential
form. However, the limiting case s = 1 associated with the commonly encountered high-
temperature form k(T) ~ 77!, has a qualitatively different behavior, in that thermal
runaway occurs only for finite values of the critical temperature 6.

8.1 Exponentially decreasing thermal conductivity

We consider a hypothetical material in which the thermal conductivity is an exponen-
tially decreasing function of the temperature, with k(T) having the form

KT) = koe™ /D, (15)

We assume, for convenience, an infinite critical temperature 63 — oo, so that thermal
runaway in this system is characterized by an interior region which is at infinite tem-
perature out to the critical radius. The function g(T") corresponding to this thermal con-
ductivity is given by the expression

9(T) = —koTp T/ = —Tok(T) . (16)
which is easily inverted to yield
T
6(g) = Tyln [’““_—g"] . (17)

Using this result with Eq. (12) gives us the steady-state temperature distribution

6koTo
6 |gr| — f(R? —r?)

T(r)=26 {gR + %(R2 - rz)] =TpIn (18)

inside the sample, where
gr = g[T(R)] = —koTp exp [~(fR/30T3)""] (19)

is negative definite. According to this expression, thermal runaway will occur at all
points inside a radius

e \/ ro - O o LR/se )
whenever
FR? > 6koTy exp [-(fR/30T3)""]. (21)

This implicitly defines critical values for each of the parameters appearing in this expres-
sion when the remaining ones are held fixed. For example if we keep all quantities fixed
except the power absorbed, the critical value f. above which thermal runaway occurs is
given as the root of the equation f. =y exp(—Bf/*), where y =6kTy/R?, and

2) In the Debye model the thermal conductivity in the intermediate regime has the form
f(T) exp (6p/T), where f(T) is a polynomial function of temperature. See, e.g., the discussion in
[14].
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Fig. 1. Plot of the normalized steady-state
thermal distribution T'(r)/T(R) as a func-
tion of normalized radial distance r/R for a
ceramic with exponentially decreasing ther-
mal conductivity. In these plots all para-
meters are kept fixed except the absorbed
power f which is increased from values be-
low the critical value f, required for ther-
mal runaway, to values above f;

0.0 0.2 04 06 08 1.0
radial distance /R

B = (R/30T4)"*. Alternatively, as the prefactor ko of the thermal conductivity is
varied, runaway will occur whenever k; drops below the value

ke = (fR2/6Ty) exp [(FR/30T3)"*).
We plot in Fig. 1 the normalized temperature distribution

T(r)/T(R) = _Bﬁ In [e-ﬁf"‘ - £ {1 - (%)ZH (22)

for four values of the absorbed power f showing the existence of thermal runaway for
f > f. and its absence for f < f.. We use arbitrary units and take § =y = 1. The value
of f. for this situation is 0.4424.

3.2 Power law decrease of the thermal conductivity

We now consider the situation in which the thermal conductivity decreases with tem-
perature as a power law,

K(T) = AT™* = AT*1. (23)

We first consider the situation with s > 1, and A =s— 1. We can then write, again
assuming an infinite critical temperature,

ATt 3 AT

or) = - = - (24)
Inverting this to find T as a function of g yields
FRtL
8(g) = |=—| 25
0= |15 )

which implies the spatial profile

12
) =olon-+ § (8 =) = e ] 0
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Using the fact that gr = —(A/4)T* this becomes

1

1/4
T(r) =Tr [1 — FATA(R: — 12) /GA] ' @0

From this expression it is clear that thermal runaway can again occur for A >0or s > 1
for large enough samples or high enough power. When thermal runaway does occur, the
critical radius 7. is given by the expression

/ 6A 64 (30\**
Te = R2 _l—fﬁ — \/;2 —F (f?) . (28)

which gives a positive radius whenever

AfR? > 64 (%’5)1/4‘ -
This leads to the following critical values beyond which thermal runaway will occur:

£ > f. = [(6A4/4)* (30)* R~E+H)1/6+A) )

A< A= %[ﬁ YR 30) Y (31)

R > R, = [(64/4)* f4+1)(30)}/E+) )

The analysis presented above does not apply to the limiting case s — 1 or A — 0, as
can be seen from the fact that the critical parameters just derived all approach zero or
infinity in this limit. Thus, we must study this case separately. To proceed, we assume
that

B

KT) =7, (33)
and take a finite critical temperature 6y, so that

9(T) = BIn (T/6). (34)
Inverting this to find T as a function of g yields

6(g) = 8¢ exp (9/B). (35)
The spatial profile of the temperature distribution is then a Gaussian

T(r)=8 [gR + %(R2 - 7‘2)] = Gpe?*/® exp [6—‘2 (R - 1"2)] , (36)
which can also be written

- foip2_ .2
T(r) = Tr exp [GB(R ™). (37)

We see that for this situation the temperature distribution remains finite everywhere
inside the sample, so that thermal runaway in the strong sense observed earlier does not
occur. In Fig. 2 we plot the normalized temperature profile for four different power laws
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Fig. 2. Plot of the normalized steady-
state thermal distribution T'(r)/T(R) as
a function of normalized radial distance
r/R for ceramic materials with power law
decrease of the thermal conductivity,
with powers s as labeled In all curves we

o have taken f =0.75

T(WT(R)

10°

0.0 0.2 0.4 0.6 0.8 1.0
radial distance /R

for one fixed value of the power f=0.75. In these plots we have taken
B = (R/30)*/6A =1 for the power law curves with s > 1, and taken B/R? =1 for the
curve corresponding to s = 1, which for this value of f is the only one shown which does
not achieve an infinite temperature at the center of the sample.

Even for s = 1, it is obviously possible to make the temperature in the sample exceed
any finite but large value 6. Indeed, for any 6y > 0 we find a critical radius

6y In (fR/36,
ro= (| R = 1B UR/3%0) (38)
4f
inside of which the temperature exceeds 8y whenever
4fR? > 6y In (fR/3630) . (39)

Thus, the physically interesting case of a thermal conductivity which falls off at high
temperatures with the inverse first power of T represents the most rapidly decaying
falloff that can occur before thermal runaway of the strong type (i.e., thermal runaway
with an infinite critical temperature) becomes possible. It may be argued that the dra-
matic effects associated with thermal runaway imply a critical temperature which is,
effectively, infinite. If so, then our results can be taken as a “proof’ that thermal run-
away cannot occur in most materials as a result of a decrease with temperature of ther-
mal conductivity alone. This finding, of course, lends support to the earlier analyses of
Kenkre et al. who attributed the runaway phenomena to an effective temperature depen-
dence of the absorption coefficient [6—12]. A few points are worth emphasizing, how-
ever. First, the dynamical analyses previously performed were insensitive to the bound-
ary conditions of the sample. It seems plausible, in view of the analysis presented here,
that an absorption coefficient that even mildly increases with temperature could push a
system with k(T) ~ T~! into the regime where thermal runaway in the strong sense can
occur. If so, then it would be expected that the critical parameters (of power, sample
size, etc.) delineating the regimes where runaway does and does not occur would be
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sensitive to the parameters which determine the variation of the thermal conductivity
with temperature. In addition, the argument that this mechanism cannot, by itself, lead
to thermal runaway, presumes that the functional form of the conductivity remains the
same at extremely elevated temperatrues. This ignores the possibility that with in-
creased degradation of the sample and the possible emergence of other chemical phases,
changes in the thermal conductivity could indeed arise which would lead to a stronger
dependence of the thermal conductivity with temperature than would otherwise be ex-
pected from conventional theories.
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