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Nonlocal approach to the analysis of the stress distribution in granular systems.
I. Theoretical framework
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A theoretical framework for the analysis of the stress distribution in granular materials is presented. It makes
use of a transformation of the vertical spatial coordinate into a formal time variable and the subsequent study
of a generally non-Markoffian, i.e., memory-possesgimgnioca) propagation equation. Previous treatments
are obtained as particular cases corresponding to, respectively, wavelike and diffusive limits of the general
evolution. Calculations are presented for stress propagation in bounded and unbounded media. They can be
used to obtain desired features such as a prescribed stress distribution within the compact.
[S1063-651%98)14305-3

PACS numbds): 81.05.Rm, 61.43.Gt, 81.20.Ev

I. INTRODUCTION Furthermore, our theory describes intermediate situations
wherein the transmission of stress is neither completely co-
Considerable activity is apparent in the recent literaturenerent[8] nor completely incoherentl1] .
[1-15] in the calculation of the stress distribution in granular
materials ranging from sandpiles to ceramic powder com- Il. STRESS BALANCE EQUATIONS
pacts. The interest stems in part from new experimental re- AND OUTLINE OF OUR APPROACH
sults[16—18, in part from the fact that important features of
old experimental datfl9—21] have never been satisfactorily =~ Some features of stress distribution in powder compacts
explained, and in part from the need to understand and corarise directly from their granular nature. Others can be de-
trol the formation of undesirable density gradients in thescribed through an application of continuum mechanics. In
manufacture of metal and ceramic parts. Variations in thdéhe present paper, we start with continuum mechanics as in
density distribution have been identified as a source othe analysis of Ref[8]. We focus attention on the stress
shrinking, cracking, and failure during the pressing and sintensor, which, in rectangular coordinates, is given by
tering processe22—24,.
Our purpose in the present paper is to provide a theoreti- Oyxx Oxy Oxz

cal framework for the analysis of stress distribution in granu-
lar materials on the basis of the idea of the formal interpre-
tation of the vertical spatial coordinate as time. Such an idea Ozx Ozy Oz
appeatrs in two earlier analyses in the literature. One of them .
is by Bouchaudet al. [8] who use continuum mechanics to I the abse_nce of torques, the off-diagonal shear-stress terms
derive a “wave equation” to describe the “coherent” trans- @re equal in pairs d,y=oyy, 0y,;=07y, and o,,=0y,).
mission of stress in a granular compact. The other, althoughléwton’s second law of motion is described by the Cauchy
it might not have been recognized as such, is the quite unrd€lation
lated analysis of Litet al.[11] who describe stress distribu-
tion through the use of a discrete Master equation following V.ot ob= ﬂ 2.2
what may be regarded as a Markoffian evolution. Our ap- LTS ’
proach in the present paper starts in the continuum mechan-
ics picture, proceeds through the introduction of formallywherep is the mass density of the body at a poih/dt is
natural constitutive relations more general than those used ifhe acceleration of the point, aids the body force per unit
earlier work, and ends in propagation equations thahare  mass acting on the point. In equilibrium, if the only body
local in the vertical coordinate. A simple case of our equa-force acting on the point is the gravitational force in the
tion turns out to be identical to the telegrapher's equatioryirection, we have
[25]. With its help, we are able to unify the treatments of
Bouchaudet al. [8] and of Liu et al. [11] by showing that, agxx+ (;ny+ 905

o= O'yx G'yy O'yz . (21)

while seemingly disparate, they are extreme consequences of X 3y 7z 0, (2.3
our general treatment. To the best of our knowledge, this
interconnection has not been realized earlier. It allows one to
combine excellent nonoverlapping insights developed into 07ny+ a(fyyjL 07Uzy=o (2.4)

stress transmission by the authors of those two references. X ay Jz
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doy, doy, 90, case of a generalized memory equatj@d] where the con-
" 3y + 5 P9 (2.9  stitutive relation is nonlocal in the coordinate

These stress balance equations describe the behavior of
the six unique elements ef. Because interest lies primarily
in the local density in the compact, which is believed to be a
function [26,27 of the local value ofo,,, we will focus  The resulting equation governirgis an integrodifferential
entirely ono,,. Equation(2.5), which governs this quantity, equation of the Volterra type,
can be recast in the form of a two-dimensional continuity
equation: 9S(2)

0z

j(z)=—DJZdz’d;(z—z’)VS(z’). (2.11

DJZdz’ d(z—2')V?S(Z'), (2.12
0

. dS
V-]+E=pg. (2.6
and reduces to the diffusion, the wave, and the telegrapher’s
The “flux” j is a two-dimensional vector withr,, and oy, gquations in the re;pective limits of a ;‘memory”_ that van-
as itsx andy components, respectively, the “densitg of  ishes[#(2)=4(2)], is constan{ ¢(z)=c /D], and is inter-
the fictitious fluid whose flow is given by E2.6) is iden-  mediate] ¢(z) = (c?/D)e” (¢7P)7],
tical to o,,, andpg is a “source term.” In this interpreta- We will see below that an examination of the constitutive
tion, the z coordinate assumes the role of tirf@). If the  relations commonly assumed in the literature on stress trans-
applied stresses are much larger than the gravitational forc@jission in granular mediée.g., in Ref[8]) suggests a natu-
the “source term” can be neglected. For the sake of simplictal generalization, that the generalization leads to the non-
ity, we will consider this situation realized in the body of the Markoffian evolution equatiorf2.12) reducing in a simple
paper and return to the source term in Sec. VI. instance to the telegrapher’s equati¢hl0, and that it is
Equation(2.6), which we now consider with its right-hand possible, on the basis of these equations, to construct a de-
side put equal to zero, can be used to deterrGimaly if an  tailed framework for the description of stress distribution in
additional equation relating the componentsjofo S is  granular media.
given. In order to understand the spirit of our analysis below,

it is useful to consider three examples of such an additional || GENERALIZED CONSTITUTIVE (CLOSURE)
equation which are known in fluid flow. The first example is RELATIONS
Fick’s law:

Since the stress balance equati¢@sd), (2.4), (2.5 are
j=—DVS, (2.7 three in number but involve six independent quantities, they
cannot be solved unless additional relations are introduced
which, when substituted in the continuity equation, leads teamong the six stress tensor components. Such relations are
the diffusion equation fo6, with D the diffusion constant. known as constitutive or closure relations. In the present
The symbolV here represents th@o-dimensionagradient.  state of the theory of stress distribution in granular materials,

The second example is they form the weakest link because, whether made explicit or
) implicit in the analysis, they arad hocin nature. This is true
‘7_1_ _ 2 of all such relations to be found in the literatlifg11,24,30—
= VS, (2.9 o
0z 33]. It appears extremely difficult, at the present stage of the

field, to provide any satisfactory physical justification for
and describes the proportionality between the “time” de-existing relations. As in the case of other constitutive rela-
rivative (z derivative of the flux and the gradient of the tjons in the literature, the one we propose below is ado
density. It leads to the wave equation, with wave propagatiomoc However, it is mathematically natural and has the dis-
speect. The third example combines features of the first andinct advantage of leading to a unification and generalization

the second examples, of earlier treatments.
5 ) The closure assumption of Jansg&®] and Thompson
A, C_j: —e?vs, (2.9  [24]. particularly as expressed by Bouchaeial. [8], pos-
dz D tulates proportionality between the diagonal elements of the

_ o ) stress tensord,y, oyy, ando,), as well as the vanishing of
and reduces to the previous two limits in easily understoodhe shear components in tiey plane:oy,=ay,=0. In the
extreme limits. When substituted in the continuity equation,gecond part of their analysis, Bouchaetdal. [8] attempt to
Eq. (2.9 leads to what is known as the telegrapher’s equago beyond this assumption through the inclusion of nonlin-

tion [25,28: ear, second-order correctionsdf, andoy,. Nonlinear con-
5 5 stitutive relations also appear in the treatment by Edwards
9°S ¢°dS and Mounfield[15].
—+ ——=cV°S. (2.10 . ;
922 D oz In the absence of a satisfactory physical argument, the

most natural constitutive relation is a simple proportionality
This telegrapher’s equation, which we will find of consider- betweeno,y, oy, ando,,, as assumed in Refig]:
able use in the present paper, unifies diffusive and wave
behaviors in a straightforward fashion and is itself a special Oyx=CONSK 04, Oy =CONSK T5,. 3.1
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We note, however, that this relation is never used dirg&lly IV. OUR EVOLUTION EQUATION
for combining with Eqs(2.3),(2.4), but only in the form of AND UNIFICATION OF EARLIER TREATMENTS

spatial derivatives: Our memory form of the constitutive relatiq@.11) leads

to the nonlocal equatiori2.12. The general program of
(3.2 analysis may thus proceed by assuming on physical grounds,
or determining from experiment, the memory functi¢(z)

) ) ] ) and the quantitp, and then solving Eq2.12) for o, i.e.,
Herec? andc; are constants of proportionality that are equalg e write Eq.(2.12 explicitly in the form

to each other in isotropic media. We develop our constitutive
relation by first reexpressing E¢.1) in the derivative form
(3.2, and then generalizing it to incorporate the contribu- d,(%,Y,2')

1 . . z 1)

tions of oy, and o,,. We represent these contributions =D

00wy ) d0,,  Joyy 2 o
= Cl y = C2 .
X X ay ay

fzdz’ d(z2—2)V30,(xy,2').
0

through the addition of first-order terms in the sense of a 9z 41
Taylor's series expansion: 4.
J J J J . . .
&‘:Cf UZZ+angZ, LW:CZ2 Uzz+a20_y2. Properties of the granular material would be reflected in
X 28 ay ay #(z) and D, and complex behavior could be described

(3.3 through appropriate forms @f(z). A particularly useful fea-

ture of the theory we present is the unification it provides of

As in the case Ot.la.nd C2, t_he quantities, f”md ar, would two seemingly unrelated treatments of stress distribution
equal each other in isotropic media. Combining these result

; . . . vailable in the literature. The connection of our theory to
with Egs.(2.9 aﬂd(z-‘j) and, assuming, as in the analysis of that of Bouchauckt al. [8] is obvious, given that we have
Ref. [8] that o, = 0x=0, we obtain

followed their analysis closely in developing the present
treatment. We simply take the memory function in E41)

C12—Z 4 a0t —==0, (3.4 tobea constanip(t)=c?D. We then obtain, from our Eq.
28 Iz (4.1), the wave equation
do Jdo
2 zz yz
—+ +—-=0. 3.
2 gy T g 39 Poxy.2)
—— —=CV0,{xy,2)
Identifying, as in Eq.(2.6), the components,, j, of the 9z
two-dimensi_onal “fl_ux” j with oy, and o, respectively,_ Po, xY,2)  Poixy.2)
and the “fluid density” S with o,,, we express our consti- =c? 5 + > ,
tutive relation(3.4), (3.5 as X ady
4.2
dj o R 2(98A 205 “2
E+aljxax+a21yay:— Cq a—XaXJrcz Way , (3.6

which, with the identification ot? with k;, is the essential
where a, andé\y are unit vectors irx andy directions, re- result of Ref.[8]. The interpretation here is that the spatial
spectively. Equation3.6) or its isotropic counterpart Eq. memory function corresponding to the analysis of R&f.
(2.9 (which we will use in most of the analysis belpig our  describes the perfect retention of information on how stress
constitutive relation. It leads to the telegrapher’'s equatiorpropagates from layer to layer in thedirection. Such a
(2.10 for o,,. While we have assumed above, following system can be imagined as consisting of identical, friction-
Ref. [8], that oy, and o, are identically equal to zero, it is less spherical particles arrayed in a perfectly ordered lattice.
actually not necessary to make this assumption to get Ed-he stress applied on one particle would be transmitted along
(3.6). It is enough to postulate that EB.3) is replaced by the lines of contact between particles and there would be no
loss of information about the original strength and direction
A0yy IO doy, of the applied force.
oy T Tox G Tgx Tk This coherent limit does not fully describe a realistic
granular system in which random-shaped particles of random
sizes are packed in a random arrangement. This would sug-
+ay0y,. (3.7 gest that stress propagation might be best described in terms
ay of Markoffian processes characteristic of spatial memories of
the system that decay quickly with the result that the stress
path takes on the behavior of a random walk in the medium.
The limit of our theory, which is opposite to that in which we
recover the results of Bouchaetlal.[8] as discussed above,
, is one in which the memory is not perfeonstant, nonde-
i(2)= _sz dze «Z2)ys(z). (3.9 (;aqu but decays |mmed!ately, i.e(z)=8(2). In such a
0 limit we recover the equation

doyy N dayy _ 022 00,4
X ay

We close this section by rewriting our constitutive relation
(2.9 in the memory form(2.11) with D=c?/a and ¢(z)
=a exp (—a2):



5844

dozAX.Y.2)

2
e DV<o,4X,Y,2)

. ?0,(X,Y,2) . ?0,(X,Y,2)
ax? ay? '

4.3

We shall now show that this resul#.3) is, in essence, the
evolution equation of Liwet al. [11].

In the analysis of Liet al.[11], the transmitted stress per
granular particlew(z,x), is described as arising from a sum
of contributions from random probabilistic transmission of
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and independent of location within the layer, and the hori-
zontal space to be one dimensional, we have

W(z,j)
dz

=F(z2)[w(z,j+1)+w(z,j—1)—2w(z,j+1)],
(4.8

which, in the continuum limit inj, reduces to the diffusion
equation with a diffusion constant that is dependent on both
z andx,y. More generally, if we take the quantitiés; to be
local in thex-y space, the right-hand side can be written as
proportional to the two-dimensional Laplacian operator.
With the identification ofw with o,,, we thus have Eq.

forces from particles in one layer of the granular material to(4.3), which is the extreme Markoffian limit of our theory, as
particles in the next lower layer. The system is discretized irfepresenting the theory of Liet al. [11].

terms of layers of a given thicknesss (We will denote the
thickness by the symbal instead of byD used in Ref[11]
to avoid confusion with our “diffusion constant)’ Sitesj, i

The authors of Ref§8] and[11] appear not to have made
use of each other’'s work and to have proceeded from their
evolution equations in entirely different ways. We hope that

are considered to be in the horizontal direction and a sum ighe unification we have provided here will allow further
taken over particles in the previous layer that participate irwork in this field to combine insights offered by both sets of
the transmission of forces to ttéh particle. Withg;;(d) as ~ analysis.

the random fraction of the stress that passes fronmtthsite
in layerd to thejth site in layerd+1, the evolution of the
stress is describglEq. (2) of Ref.[11]] through

V. APPLICATIONS OF THE THEORY

As illustrations of the usefulness of our theoretical frame-
work, we work out its consequences for stress distribution in
unbounded media and in long pipes, respectively. We will

w(d+1j)=m(d+1j)g+ > gj(dw(d,i). (4.4
: use for this purpose the telegrapher’s equation

We have shown explicitly here the weigim(d+1,j)g, the
product of the mass of the particle in layet+ 1 at sitej and

the acceleration due to gravity. In their analysis, the authors
of Ref.[11] take that source term to be unity. If we neglect o _ .
this term under the standard assumption that the appliedith D=c?/a. For the sake of simplicity, we will consider
pressure is much greater than the internal stresses due Rgre only a two-dimensional system and thus use, instead of
gravity, notice that the force transmitted through the particleEd. (5.1), the equation

j on layerd+1 must equal the total of the fractional force

Po, X,Y,2) o, AXY,2)
+ =

a22 9z CZVZO-ZZ(XIyaz) (51)

transmitted through the particléson layerd, i.e., =;q;;(d) FPo,X2)  Jo,A%,2) g2 o, AX,2) 52
=1[see Eq(3) of Ref.[11]], and subtract from Ed4.4) the 972 9z I :
identity
A. Stress distribution in unbounded media
w(d,])z[Z q”(d)}w(d’”’ 4.9 We take the applied stress,,(x,0) at the “surface”z
=0 to be a delta functiod(x). The solution of Eq(5.2) is
we find then given by
- O(x+cz)+ 6(x—c2) - 5.3
w(d+ 1))~ w(d, )= [a;(dw(d.i) =g (Aw(d.])]. oAx2z)=e 2 T 63
(4.6 where the ternT vanishes identically focz<x, and equals,
This is a difference equation in the discrete layer variable for cz=x,
whose incremenAd equals 1. Going to the continuum limit
in the variabled, dividing by Ad, and taking the limitAd T:(i) | (ﬁ e )
—0, we obtain the well-known Master equation 4c/| % 2c

P i cz (24
M) S Ry @wi - Fy@wz), @) *W“(% °222_X2)} o4

whereF;;(2) is limyq_o g;;(d)/Ad and we have replaced thel’s being modified Bessel functions. We immediately re-
the discrete variablé by the continuous variable. If, for cover the interesting phenomenon of “light cones” discov-
simplicity, we take theF’s to be nearest neighbor in extent ered by Bouchauet al. [8]. Thus, in the limita=0,
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FIG. 2. Stress distribution in an unbounded medium for an ap-
plied é-function stress for intermediate parameter ranges. Param-
eters arec=1, «=0.2 in (@), andc=1, a=3.2 in (b). Units are
arbitrary.

limits are shown in Fig. 1 and intermediate cases are shown

singular part of the stress. In Fig(h), the quantity plotted is
the entire stress given by E¢5.6) and D=1. The wave
extreme can be seen in Figal for which « is nearly van-
ishing: «=0.005, and corresponds essentially to the wave
limit of Bouchaud et al. [8]. The “light cone” behavior

as in Ref.[8]. Our theory shows that, in addition, there is a mentioned by those authors is evident in Figa)1Case 1b)
nonvanishing stress distributiomithin the light cones. This
stress is given by our term. In the limit that reduces our
theory to the opposite extreme of Lit al. [11], the light

cones spread out to coincide with the surfaee0, and the
entire region experiences stress:

Needless to say, the solution for arbitrary prescribed distri

efx2/4Dz
O'ZZ(X,Z)ZMTZ)IIZ. (56)

bution at the surface=0 is obtained by using the solution
(5.9 as a propagator, i.e., as

ozz(x,z)=J dx' G(x—x",2)a,4(x",0), (5.7

whereG(x,z) is the right hand side of Ed5.3).
In Figs. 1 and 2, we display plots for the “normal stress”

o,AX,z) in arbitrary units as predicted from the present

analysis when the applied stress i§ &unction. The extreme

is the extreme diffusive limit as would correspond to the
equations of Liuet al. [11]. Figure 2 describes intermediate
situations inaccessible to extreme wave or diffusive treat-
ments. We see both “light cone behavior” and the onset of
the diffusive (Gaussiaj profile further down from the sur-
face. Parameter values in FiggaRand 2b) are «=0.2, a
=3.2, respectively. The scale changes along the stress axis
are indicative of the fact that the wake is zero for vanishing
a, and rises in value as the evolution becomes more diffu-
sive.

B. Stress distribution in pipes

To analyze the distribution of stress in long pipes we
solve the boundary value problem relevant to Eg2). The
application of the method of separation of variables is
straightforward as far as the form of the solution is con-
cerned,

azz(x,z)=2k (Acoskx+B,sinkx)gu(z); (5.9
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o
g(z2)=e"(*?7 coshQ,z+ =— sinh Q,z|,
20,

interesting to examine this center line variation with the help
of our results. Equation(5.12) gives, for the center line
stress,

Q= JVa?l4—c?K2. (5.9 4(—1)m
— —(al2)z
O-ZZ(OIZ) Po€ E 7T(2m+ 1) Cosr(wmz)
However, the choice of the boundary condition to be used is “oL.
almost as difficult to motivate on physical grounds as the a
constitutive relations. For illustrative purposes only, we will + o sinh(wmz) |. (5.19
m

take the stress to be vanishing on the boundaries of the com-

pact. Thus, we assume that the compact extends ¥6m  The sum can be evaluated exactly by going into the Laplace

—L/2tox=L/2, and thaw,(+L/2,2)=0. Only the cosines  yomain. Using tildes to denote the Laplace transfosrhe-
in Eq. (5.8 survive as a result of the obvious symmetry in ing the Laplace variable, we have

the problem, thé\'s are obtained from the functional form of

the applied stress at=0: 4(=1)"

L/2
Ak=(2/L)f dx coskxa,Ax,0), (5.10
L2 eta
X
2 2
and, withm=0,12 . . .. g“+ea+[(2m+1)cw/L]
1 L
k=(2m+1)(=/L). (5.11 =3 l—Sec%z—C\/SZ-I—sa . (5.15

For the usual case wherein a constant punch pregguie

: The summation is confirmed in standard taljlg4]. The
applied across the top surface of the compact,

Laplace inverse of the extreme right side of Ef.19H is
known for @=0. In that wave limit, the stress is a square
wave W(z) along thez coordinate. It is constant at the ap-
plied value py for 0<z<L/2c, flips to —pq for L/2c<z
<3L/2c, flips back top, for 3L/2c<z<5L/2c, and contin-

4(—-1)"m
— —(al2)z _—
024X,2) = Ppoe m=%___ m(2m+1)

Xcos(2m+1)ﬂ-x cosw-7) ues alternating in this fashion. Using a theorg®®] that
m ~
L allows one to calculate the Laplace inversef¢f/e?—a?) if

the Laplace inverse of (¢) is known, it is possible to invert
Eq. (5.15 to obtain the center line stress explicitly as

, (5.12

o
+ — sinhw,z

M(u)+(al2)

z
(5.13 0,402)/po=1+ J due (@2
0

wn={a?/4—[(2m+1)(cm/L)]?}*2

Equation(5.12 shows that the stress dependence on the
horizontal coordinate is oscillatory as is appropriate to the
boundary stress being held constant throughout the pipe
walls. The dependence along the vertical coordinate is hy- . L . .
perbolic if @/2>2c#w/L. When this inequality is not satis- wherel, is a modified Bessel function and(z), the deriva

fied, the dependence is hyperbalifigonometri¢ for modes tive dW(2)/dz of the square wav&V(z) described above,
- . can be expressed as an infinite sunddé@inctions centered at
for which a/2 is greatefsmalley than (2n+1)(cw/L). Our ltio] fL/2c. In th letelv diffusive limit. th .
analysis thus reveals the interesting feature that the nature opuipes o ¢. N the complietely diftusive fimit, the cen
L ; X line stress distribution is given by €)1
the stress variation along thertical coordinate depends on e —_ . .
the mode considered, while which modes predominate is de-. sech[(L/2)ye/D]} in the Laplace domain. Inversion
termined by the top surface stress distribution alonghtbré yields
zontalcoordinate. Here, we see similarities with, and depar-
tures from, the behavior predicted by Jans$86] and
Thompsor 24]. Their calculations show the stress as having
a simple exponential dependence on depth. This could result
from the retention of only the lowest spatial frequency termswhere 6 is the elliptic theta function of the first kind.
in the Fourier sum in Eq5.12. If, however,« is relatively In Fig. 3 we plot the center line stress as a function of
small, i.e., if the spatial memory function that decays slowly,depthz for c=1. Several features are worthy of note.(&
a significant contribution to the behavior of the stress can béhe stress is plotted for three valuesaaf6, 12, and 24. The
made by the higher frequency components. This can result idiscontinuities near the values of multiples loRc, which
oscillations in the stress as a function of depth. are evident particularly for the smaller values @f arise
The analysis of Thompsof24] predicts that the stress from wall reflections and are a consequence of the finiteness
variation along the center line of the compact is constantof the “speed parametert. The stress is constant from the
This is in contradiction with experimental observations. It issurface to the depth that corresponds to the first reflection.

XJOudsll(s)M(\/uz—sz) , (5.16

172 4Dz
UZZ(O,Z)/pOZZJ dv 64| v Bk (5.17
0
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1.2

I I I I I more pronounced for lower values of and the diffusion
equation results do not exhibit discontinuities. Our theoreti-
cal prediction that the center line stress generally depends on
Z is in agreement with experiment but in conflict with the
theory of Thompsor{24], which could correspond to the
extreme diffusive limit.

Our purpose in presenting the above treatment of the
boundary value problem has been only illustrative. Wave
features present in the wave or telegrapher's equation can
lead to unphysical consequences such as negative values for
the stress particularly as a consequence of imposed boundary
conditions. A more general treatment that eliminates these
features has been developed in the following pal8§]
where we have compared our predictions to experiment.

Boundary value treatments of the kind we have given here

appear not to have been presented from Bouchetwal's

0 0'5 1'0 15 >0 2'5 3.0 wave equatior(4.2), or from Liu et al’s diffusion equation
) ; ) : ) : ) (4.39). The former authors have focused attention on what
T T T may be termed “the ray optics limit” of the wave equation
in their treatment of silo geometry, while the latter authors

have concentrated on a mean field treatment of the stress
(@ z (arb. units) distribution. Our boundary condition analysis should
12 complement these earlier methods of investigation.

G,, (arb. units)

L/2¢c 3L/72¢ SL72¢

VI. NONLINEAR EVOLUTION EQUATIONS

1.0 e -

~— wave-like Our analysis thus far has used the reduced form of the
0=24 — diffusive “continuity equation” (2.6) in which the termpg is consid-
ered negligible. This is warranted when the stress due to the
weight of the granular material is a small perturbation on the
applied stress—a situation that is usual during compaction.
However, we return to the general case in this section and
show how the inclusion of the source tegrg leads to non-
linear evolution equations.

Our point of departure is the full form of E¢2.12 with

the gravity term added

0.8

o, (arb. units)
<o
N
|

04+

02

do,AX,y,2") z )
0.0 | | ] — Q- D f dzZ' ¢(z—2")Veo,x,y,z2" ) +gp(2).
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0

R .

L2¢ 3L/2¢ 51./%¢ Study of the stress-density relation in powder compacts has

led to forms for the equation of state that expresses the den-

sity p as an explicit nonlinear function of the stress compo-
FIG. 3. The center line stress plotted as a function of degt ngnto-zz [26,27). If one recognizes that thzedgpendence of

c=1,L=1 from equation(5.16. Units are arbitrary. In(@ the P I Eqg. (6.1 occurs through such an e>_<pI|C|t stress depen-

stress is plotted for three values af 6, 12, and 24. Inb) the ~ dence ofp, one sees Eq(6.1) to be an integrodifferential

solutions of the telegrapher’s equation are shown by solid lines angguation of the Volterra type with a nonlinear forcing term

those of the corresponding diffusion equati@ee text by dotted

lines. Thompson’s resul{24] that the center line stress is indepen- Jo,/X,y,z’) z R ,

dent of depth could correspond to the extreme diffusive limit. oz DJ; dZ' ¢(z—=2")V 0o,4X,y,2") +9p(0;).

(6.2

(b) z (arb. units)

The decay at greater depths is slower for larger values. of

In (b) we show a comparison of the telegrapher's equationFor an exponential “memory” ¢(z)=a exp (—az), the
analysis to the diffusion equation analys&s would be ap- nonlinear equation takes the form
propriate to Ref[11]). Diffusion results are shown by dotted

lines, the telegrapher’s results by solid lines and values of 5
chosen are 6 and 24, respectively. The parameter in the dif- szer[a_gdp(Uzz) 992
fusion equationD, is taken to be related to the telegrapher’'s Py do,, | 9z

equation parametersa throughD = c¢?/ «. The difference is (6.3

= CZV20'22+ agp(o;,),
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which is a nonlinearly driven telegrapher’s equation with aunbounded as well as bounded granular media, which add
nonlinear damping constant. The limits for extreme forms ofinteresting features to the results of earlier analyses and sug-
the “memory” are the nonlinearly driven wave equation  gest entirely new features not accessible to earlier theory,
(vii) derivation of nonlinear evolution equations consisting
of the telegrapher’sor memory equation driven by terms
c?V?0,,, (6.4  that combine the present analysis of stress gradients with the
previous analysis of the stress-density equation of state given
i ) . ) by some of the present authd&7].
and the nonlinearly driven diffusion equation yOne of the sflortcomings of our theory, which it shares
with all treatments known to us in the literature, is that the
A0, ) exact physical origin or justification of the constitutive rela-
7 PVt gp(oz), (6.9 tions is not known. Since all the treatments justify the con-
stitutive relations only on mathematical grounds, there is cer-

respectively. As an example, we state the evolution equatioffinly a possibility of the emergence of spurious results. We

that results in the extreme diffusive limit by using the equa-Know of no solution to this problem at the present. The va-
tion of state given by Kenkret al. [27]: lidity of the assumptions can be judged only through com-

parison to experiment. Another point of concern is related to
the fact that, whereas the diffusion equation preserves posi-
agzz—g[po[l—(pw_po)[bl(l—e‘”zz"fl) tivity of the quantity it governs, the wave and the telegra-
Jz pher’s equations do not. The treatment of Bouchetual.[8]
4 ) as well as the telegraphers equation analysis can, therefore,
] 9022 give rise to unphysical negativities. These undesirable fea-

dp(az)

do,,

&20'22

972

00,4
dz

©

+b,e ™ %al727] =D —=. (6.6)

NG tures appear in two dimensions for all media and one dimen-
sion for bounded media under certain boundary conditions.
We have studied equations such(6s) through analyti- An extension of our analysis, which removes these negativi-
cal approximations including perturbation techniques andies in practical applications to experiment, is given in the
mode-coupling procedures as well as via numerical methodsucceeding pap¢B6]. An additional problem that our theory
The interplay of the diffusive evolution with the nonlineari- shares with all treatments that interpret theoordinate as a
ties arising from the rearrangement process associated witime coordinate(and they include the descriptions of both
o, and the crushing process associated wijrgives rise to  Bouchaudet al.[8] and Liuet al.[11]) is that, in the present
rich behavior that will be reported elsewhere. These considform, they are valid only in long pipes or media without a
erations are of importance to self-compacting systems sudhottom. Termination in the direction as in a compact intro-
as sandpiles or unconsolidated geological features such asices “boundary conditions in time,” which appear difficult
hillsides and mine tailings. to treat from evolution equations. In the true time evolution
situation, we predict behavior at a later time, given spatial
boundary conditions for all time and an initial condition. The
incorporation of a “final” condition, i.e., a boundary condi-
We discuss below the primary steps that constitute oution at large values of time seems difficult to implement.
theory, the advantages and disadvantages of our theoreticélork is under way on this conceptu@kchnical problem.
framework, and work in progress. The essential ingredient®ending the resolution of this feature, we must consider the
of the theory we have presented in this paper are as followgresent theories in this category, whether ours or those of
(i) the treatment of granular material through the CauchyRefs.[8] and[11], to be restricted in their validity to predic-
relations (2.3), (2.4), (2.5 for the stress tensor under the tions in regions far away from bottom surfaces.
assumption of the validity of continuum mechani@s) in- The success of our theory lies in the unification of the
terpretation of one of the Cauchy relations as a two-seemingly disparate treatments of R¢8.and[11], the ex-
dimensional continuity equatiof2.6) for a fluid whose den- plicit application to existing observations with both qualita-
sity and flux are given respectively by,, and a two- tive and quantitative agreemef@6], and the considerable
dimensional vector whose andy components arer,, and  potential for further results. We briefly mention this potential
ay,, (i) a search for additional relations between the otheby alluding to our ongoing work.
stress components in the form of a constitutive relation for We have seen in Sec. V that explicit incorporation of
the flow of the “fluid,” and a statement of such a new con- finite acceleration due to gravity leads to nonlinear equations
stitutive relation,(2.9) or (3.7), obtained through dinear of stress distribution. We are currently involved in analytical
extension of previous arguments of Janssen-Thompsompproximations and numerical investigations of the solution
Bouchaud(iv) the derivation of a generally non-Markoffian of these nonlinear equations. We point out that these nonlin-
evolution equatior(4.1) for o, involving a spatial memory earities arise from the combination of our framework with
function with the related interpretation of the vertical coor- stress-density equations of state current in the literature
dinate as a time variabléy) unification of two quite unre- rather than from generalizations of constitutive relations as
lated treatments in the literature by deriving them as twan [8]. Our theory allows us to do “smart processing,” i.e.,
extreme cases of our general result; the wave equgdi@  achieving desired stress distributions in given locations by
and the diffusion equatiofd.3), (vi) application of our te- controlling the applied stress. By calculating the Fourier co-
legrapher’s equation analysis to treat stress distributions iefficients for a system whose extent changes in width, it is

VIl. REMARKS
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possible to analyze the compaction behavior of constraineteport on these and related matters in forthcoming publica-
granular systems beyond that of pipes. Such systems includ®ns.

funnel-shaped silos, dies with sloping sides, and perhaps

even sandplle_s wherein the boundaries are defined by the ACKNOWLEDGMENT

sides of the pile that have relaxed to the angle of repose.
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