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Nonlinear field dependence of the mobility of a charge subjected to a superposition
of dichotomous stochastic potentials
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A general prescription is presented to address a large variety of forms of the nonlinear dependence of the
static charge mobility on the applied electric field. The system consists of a classical charge subjected to an
arbitrarily strong steady state electric field and to a stochastic potential consisting of a linear superposition of
an unlimited number of dichotomous potentials in one-dimensional space. It is shown that the nonlinear
mobility can be calculated for arbitrary forms of the density function of the individual dichotomous compo-
nents of the stochastic potential. Specific cases of physical interest are analyzed. One of them provides a
curious possibility for an explanation of the universally observed square root field dependence of the logarithm
of the mobility of photoinjected charge carriers in molecularly doped polymers.@S1063-651X~98!09006-0#

PACS number~s!: 05.20.2y, 05.60.1w
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I. INTRODUCTION AND MODEL

In this paper we present a prescription to address the e
tric field dependence of the nonlinear static mobility of
charged particle moving under the action of a class of sim
stochastic potentials having certain characteristics descr
below. While the contexts in which the calculation and t
insights gained from our prescription can be useful are
merous, including the general theory of nonlinear respo
@1,2# and specific applications to phenomena in ceramic m
terials @3#, our analysis was motivated by the near-univer
behavior of the mobility of photoinduced charge carriers@4–
8# observed in molecularly doped polymers. Indeed, it w
be seen below that a curious correspondence exists bet
the so-called Poole-Frenkel behavior of the mobility@4–7#
and the field dependence relevant to a simple particular
of our general result.

In the rest of this section we describe the model. In s
cessive sections, we present our generalized prescrip
which takes one from the density function of the stocha
superposition of potentials to the field dependence of
mobility; describe the Poole-Frenkel behavior, and its gen
alization, as simple particular cases emerging from our p
scription; present other special cases of our formula;
provide a discussion.

We have shown recently@2,8# that a highly useful feature
of the Kubo formalism@9#, i.e., that the response of a syste
to an external stimulus may be expressed completely
terms of system correlation functions calculated in the
sence of the external stimulus, can be retained for cer
response situationseven in the fully nonlinear regimewhich
lies outside the validity of the Kubo formalism. One of o
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previously published results@2,7# describes the nonlinea
mobility m(E) of a classical particle of chargeq and massm
moving in an infinite one-dimensional space spanned by
coordinatex, and subjected to a random stationary poten
U(x) and an external electric fieldE. The mobility, defined
as the ratio of the velocity of the charge to the fieldE, is
given simply in terms of the system correlation function

c~y!5exp@U~x1y!/kT#exp@2U~x!/kT#. ~1.1!

The overbar in Eq.~1.1! represents an ensemble average o
realizations of the stochastic potentialU(x). The assumed
stationarity of the stochastic process underlying the poten
ensures that the correlation function depends only on
differencey in the coordinate values. If the Laplace tran
form of the correlation functionc(y), with «5qE/kT as the
Laplace variable, is denoted byc̃(«), the mobility is given
explicitly by

m~E!5
m`

« c̃~«!
5

tkT

mEE
0

`

dy e2yqE/kTc~y!

. ~1.2!

Herem` equals the saturation value of the mobility, i.e., t
valueqt/m ~wheret is the relaxation time! which it would
have in the absence of the potential.

Equation ~1.2! can be obtained by Brownian motio
analysis in the limit of high damping: the Langevin equati
for the charge velocity is converted into a Smoluchow
equation which is then solved in the steady state@2#. This
provides a straightforward way of calculating thenonlinear
mobility from a given stochastic potentialU through an
evaluation of the correlation functionc(y), and thus has the
advantages of a Kubo-like formalism despite the fact that
analysis is not restricted to the linear regime.
d-
99 © 1998 The American Physical Society
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In the present paper we consider stochastic potentialU
which are constructed from arbitrary linear superpositions
independent dichotomous potentials:

U~x!5U01(
i 51

N

D i~21!ni ~x,0!. ~1.3!

HereU0 is a constant,D i is the amplitude of thei th dichoto-
mous component of the potential, andni(x2 ,x1) is a random
function characteristic of that component. This random fu
tion counts the number of jumps~whose distribution is as
sumed to be uniform! that the particular component of th
potential makes between the valueD i and2D i in the inter-
val betweenx1 and x2. The i th component has the correla
tion lengthl i , by which is meant that the ensemble avera
ni(x2 ,x1) equalsux22x1u/ l i . It is well known that the indi-
vidual components of the potential are exponentially cor
lated @10#. We have shown elsewhere@2# that, for this case,
the correlation functionc(y) appearing in Eq.~1.1! has a
product form arising from the individual components:

c~y!5)
i 51

N

ci~y!, ~1.4!

ci~y!511~12e22y/ l i !sinh2~D i /kT!. ~1.5!

This expression for the correlation function will serve as o
starting point in the present paper.

II. GENERAL RESULTS

If we denote the amplitudes of the individual potent
components byD i /AN rather thanD i , and introduce the
quantity r i52/l i , we can rewrite Eq.~1.5! as

ci~y!511~12e2yri !sinh2~D i /ANkT!. ~2.1!

We consider the limit of largeN. Specifically, we assume
that, for all i , D i /ANkT!1. This allows the replacement o
the hyperbolic sine in Eq.~2.1! by its argument:

c~y!5)
i 51

N F11
1

NS D i

kTD 2

~12e2yri !G . ~2.2!

Taking the logarithm of both sides of this equation and us
the fact that N is large so that ln@11(1/N)(D i /kT)2(1
2e2yri)# can be replaced by (1/N)(D i /kT)2(12e2yri), we
obtain

c~y!5expF 1

N(
i 51

N S D i

kTD 2

~12e2yri !G . ~2.3!

We now assume that in the assembly of the dichotom
potentials which constitutesU(x), all correlation lengths are
possible, i.e., that we have a continuous variabler which
extends from 0 tò . We take the limit of infiniteN and
introduce the quantityl(r ) through

l~r !5 lim
N→`

~1/N!(
i 51

N

D i
2d~r 2r i !. ~2.4!
f
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Clearly, l(r ) is a weighted density of states differing from
the normalized densityg(r )5 limN→`(1/N)( i 51

N d(r 2r i)
merely by a factor associated with the amplitude of the in
vidual dichotomous components. We will calll(r ) the den-
sity function. The correlation function can now be express
as an integral overr space:

c~y!5expF ~1/kT!2E
0

`

dr l~r !~12e2yr!G . ~2.5!

Equation~2.5! can be expressed in terms of the dens
function l(r ) through its Laplace transform withy as a
Laplace variable,

c~y!5exp$~1/kT!2@ l̃~0!2l̃~y!#%. ~2.6!

The tilde denotes the Laplace transform.
Equation~2.6! or ~2.5!, along with Eq.~2.4!, is one of the

primary results of the present paper. It gives a recipe for
calculation of the correlation functionc(y) from the density
functionl(r ) which characterizes the system~i.e., the poten-
tial superposition!. The correlation function, thus evaluate
can then be substituted into expression~1.2! to obtain the
field dependence of the nonlinear mobility. The fully explic
prescription leading from the potential density functionl(r )
to the mobilitym(E) is

m~E!5S tkT

mED F E
0

`

dy e2yqE/kTe~1/kT!2E
0

`

dr l~r !~12e2yr!G21

.

~2.7!

Although the model considered here is restricted to pot
tials which are linear combinations of dichotomous pa
with amplitudes small enough to allow the limitD i /ANkT
!1, it has considerable generality conferred on it by t
arbitrary nature of the density functionl(r ). The largeN
limit makes the potential a superposition of Ornste
Uhlenbeck processes. The calculational task in obtaining
mobility for an arbitrary linear superposition of an infinit
number of Ornstein-Uhlenbeck processes consists of
evaluation of two essentially successive direct Laplace tra
forms: that of the density functionl(r ) with the distancey
as the Laplace variable to obtain the correlation funct
c(y), and that ofc(y) with qE/kT as the Laplace variable to
obtain the mobilitym(E).

III. POOLE-FRENKEL FIELD DEPENDENCE
FROM AN EXPONENTIAL DENSITY FUNCTION

A near-universal observation in molecularly doped po
mers is the Poole-Frenkel behavior of the mobility of pho
injected charge carriers: the logarithm of the mobility
found to be proportional to the square root of the elec
field over a very large range of fields. The observation h
received a great deal of attention for decades, and has
recently explained@7# satisfactorily on the basis of dipol
disorder ideas developed over the years by a numbe
workers @4–6#. A remarkable consequence of our gene
formula ~2.7! is that Poole-Frenkel dependence is found
be a consequence of simply assuming the density functio
the stochastic potential superposition to have what is perh
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the simplest decaying form: an exponential. No dipolar d
order is involved.

We take the density function to decay inr space with
decay constanta, and to have the integrals2 over all r
space:

l~r !5s2a exp~2ar !. ~3.1!

We see from Eq.~2.4! that s2, which is given by

s25 lim
N→`

~1/N!(
i 51

N

D i
25 lim

N→`

@U~y!2U0#2, ~3.2!

is the mean squared amplitude of the dichotomous com
nents of the stochastic potential, and is thus a measure o
disorder in the system. The correlation function is obtain
from Eq. ~2.6!:

c~y!5expF S s

kTD 2S y

y1a D G . ~3.3!

By switching the integration variable toy1a, the Laplace
transform of Eq.~3.3! is written as

c̃~«!5ea«e~s/kT!2F S 2s

kT
Aa

« DK1S 2s

kT
Aa« D

2E
0

a

e2«y2~a/y!~s/kT!2
dyG , ~3.4!

whereK1 is the modified Hankel function. The exact expre
sion for the mobility is obtained from the reciprocal of E
~3.4! via the recipe in Eq.~1.2!. Reduction of that exac
expression to the Poole-Frenkel form is straightforwa
when, in Eq.~3.4!, s/kT is sufficiently large. In this limit,
the integral may be neglected relative to the term prop
tional to K1, because the former decreases exponenti
with (s/kT)2, whereas the latter decreases exponenti
only with s/kT. Furthermore, whens/kT is large,K1 can be
replaced by its asymptotic form to yield

c̃~«!5ApsAa

kT«A«
expF S s

kT
2Aa« D 2G . ~3.5!

When the second term in the exponential is small with
spect to the first, the mobility reduces to the Poole-Fren
form

m~E!5S qt

m D F ~kT!3

p2s2qEa
G 1/4

e2~s/kT!2
e2sAqEa/~kT!3

,

~3.6!

with the validity condition

S s

kTD 2

@
qEa

kT
@S kT

s D 2

. ~3.7!

Both the mobility expression~3.6! and the validity condition
~3.7! are seen to be identical to those derived in Ref.@7# on
the basis of dipolar disorder arguments, if one makes a si
correspondence. This correspondence isa↔a, wherea is
-
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the radius of the sphere introduced in Ref.@7# to take into
account the finite size of a transport site, and the conseq
inability of molecular dipoles to approach arbitrarily close
a charge located at such a site. While only the first of the t
inequalities comprising Eq.~3.7! was mentioned explicitly in
Ref. @7#, the second inequality is also necessary for a deri
tion of Poole-Frenkel behavior from dipolar disorder, as
evident from the discussion in Ref.@7#.

It is interesting to contrast this derivation of the Poo
Frenkel dependence of the mobility on the field with th
given in Ref.@7#. Our present derivation makes no mentio
of dipoles, and does not have a cutoff in the correlation fu
tion arising from the finite size of a transport site~molecule!.
The cutoff length of Ref.@7# corresponds to the exponent o
the r dependence of the density function here. Also, o
derivation arrives directly at an expression for the full cor
lation function c(y) rather than at the correlation of th
quantity U(y)2U(0), which was first obtained in Ref.@7#
and then followed by an approximate Gaussian prescrip
to obtainc(y). As a consequence of the central limit the
rem, the stochastic potential in our present case is a Gaus
process, arising as it does from a superposition of indep
dent Ornstein-Uhlenbeck pieces. Therefore, one obtains
exact result even if one follows the Gaussian approximat
used in Ref.@7#.

The present analysis does not provide a real ‘‘expla
tion’’ of the Poole-Frenkel behavior, since it does not ascr
the behavior to any physical source—only to an assum
dependence ofl(r ). Nevertheless, the analysis is intriguin
particularly in the light of the fact that Poole-Frenkel beha
ior appears to have been observed in some systems in w
dipolar disorder is absent@11#. An understanding of wha
physical sources can give rise to an exponential depend
of the density function~or any related dependence capable
yielding the Poole-Frenkel behavior through an asympto
analysis! should provide further insights into the Pool
Frenkel phenomenon.

IV. ARBITRARY POWERS IN THE FIELD DEPENDENCE
FROM BIASED EXPONENTIAL DENSITY

If the correlation lengths of the dichotomous compone
of the potentials are concentrated at a nonzero value,
density vanishing at both very small and very large corre
tion lengths, the density function may be represented b
biased exponential

l~r !5s2
an11

G~n11!
r ne2ar , ~4.1!

where G is the ~complete! gamma function. The density
function peaks atr 5n/a. It yields the correlation function

c~y!5expF S s

kTD 2S 12
an11

~a1y!n11D G . ~4.2!

Exact evaluation of the Laplace transform ofc(y) in Eq.
~4.2! does not appear possible. An asymptotic evaluat
may be carried out as follows.

The Laplace transform ofc(y) is eAI with A5(s/kT)2,
and the integralI given by
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I 5E
0

`

dy expS 2«y2
Aan11

~y1a!n11D . ~4.3!

The valueym at which the argument of the exponent is
extremum satisfies

ym5FAan11

«
~n11!G1/~n12!

2a. ~4.4!

If our interest is in the limit

ym@a, ~4.5!

Eq. ~4.4! reduces to

ym5FAan11

«
~n11!G1/~n12!

. ~4.6!

The definitiont5y/ym reduces the integral to

I 5ymE
0

`

dt expS 2«ymF t1
Aan11/«ym

n12

„t1~a/ym!…n11G D
5ymE

0

`

dt exp@2«ymg~ t !#, ~4.7!

where the last equality definesg(t). We see from Eq.~4.6!
and from condition~4.5! that

g~ t !5t1
1/~n11!

tn11
. ~4.8!

At the peak, t5tm51, g(tm)5(n12)/(n11), and
@d2g(t)/dt2# tm

5n12. The replacement ofg(t) by g(0)

1(1/2)@d2g(t)/dt2# tm
(t21)2, along with the extension o

the limits of the integral to6`, is possible if

«ymS 11
n

2D@1. ~4.9!

Under this condition,

I 5ymA 2p

«ym~n12!
expS 2«ym

n12

n11D . ~4.10!

With the definition B(E,T)5@(qEa/kT)(n11)(s/kT)2(n
11)#1/(n12), the mobility is then given by

m~«!5
qt

m
A n12

2pB~E,T!
e2~s/kT!21B~E,T![ ~n12!/~n11!] ,

~4.11!

under the validity condition

S s

kTD 2

~n11!@
qEa

kT
@F S kT

s D 2 1

~n11!S 11
n

2D n12G 1/~n11!

.

~4.12!

This validity condition is a combination of Eqs.~4.5! and
~4.9!.
We see that, for the casen50, for which the biased ex-
ponential density~4.1! reduces to the exponential densi
~3.1!, the correlation function~4.2! reduces to Eq.~3.3!, and
the generalized dependence~4.11! of the mobility reduces to
Poole-Frenkel behavior~3.6!. The validity condition~4.12!
reduces to Eq.~3.7! for this case.

The primary result we have obtained here is that, if t
observed dependence of the logarithm of the mobility on
electric fieldE is of the power law formm;exp(Ec) with
exponentc, we can ‘‘explain’’ this behavior by assuming th
density function of the dichotomous components of the s
chastic potential to be the biased exponential withn5(2c
21)/(12c):

l~r !5s2
ac/~12c!

GS c

12cD r ~2c21!/~12c!e2ar . ~4.13!

This density function starts at zeror with zero value, peaks
at r 5(2c21)/(12c)a, and then decays to zero. In Fig.

FIG. 1. The density functionl(r ), the correlation functionc(y),
and the mobilitym(E) for two values of the exponentn ~0 and 4! in
the biased exponential case of Sec. IV. The casen50 exhibits
Poole-Frenkel behavior identical to that arising from charge-dip
interactions as in Ref.@7#. The casen54 exhibits behavior identica
to that arising from induced charge-dipole interactions also m
tioned in Ref.@7#. The disorder parameters/kT is taken to beA10.
The saturation mobilityqt/m is taken to be 731023 cm2/V s.
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we display ~a! density functions and correlation function
and ~b! the asymptotic dependence of the mobility on t
field, for two different values of the exponent:n50 and 4.
The first represents Poole-Frenkel behavior, which ar
from charge interactions with permanent dipoles as in R
@7#. The second exhibits behavior~an exponent of56 instead
of 1

2 in the field dependence! identical to that arising from
induced charge-dipole interactions also mentioned in R
@7#. The values of the disorder parameters/kT and the satu-
ration mobility are taken to beA10 and 731023 cm2/V s,
respectively, and the square root of the field is displayed
to 1600~V/cm!1/2. These values are in keeping with expe
ments on molecularly doped polymers@4#. In Fig. 1~a!, the
density functions are displayed in the main part, and
correlation functions in the inset. The asymptotic dep
dence of the field is displayed versusE1/2 in the main part of
Fig. 1~b! ~showing asymptotic linearity forn50 but not for
n54), and versusE5/6 in the inset~showing asymptotic lin-
earity for n54 but not forn50). While the curvature for
low fields arises from the prefactors becoming important
that range, the asymptotic formulas are not accurate in
region.

V. CORRELATION FUNCTION FOR OTHER
SPECIFIC CASES

We present some additional specific cases of the corr
tion functionc(y). They are exact consequences of our f
mula ~2.5!.

A. Single correlation length

If the potential has a single correlation lengthl , the den-
sity function is given by

l~r !5s2d~r 22/l !, ~5.1!

and the correlation function is

c~y!5exp@~s/kT!2~12e22y/ l !#. ~5.2!

The mobility can be calculated explicitly for this case@2# and
may be expressed in terms of the confluent hypergeom
function 1F1 or, equivalently, in terms of the incomplet
gamma functiong(a,x)5*0

xe2tta21dt:

m~E!5S 2kTt

Elm D S s

kTD qEl/kTF e2~s/kT!2

g„qEl/2kT,~s/kT!2
…

G .

~5.3!

B. Biased Gaussian density function

Another density function which peaks at a noninfin
value of the correlation length is given by a biased Gauss

l~r !5S s

b D 2

r expF2
1

2S r

bD 2G ~5.4!

which peaks atr 5b. The correlation function is given in thi
case by
s
f.

f.

p

e
-

n
at

a-
-

ric

n

c~y!5expF S s

kTD 2Ap

2
bye~1/2!~yb!2

erfcS yb

A2
D G . ~5.5!

C. Rectangular pulse density function

The mean value and dispersion of the correlation leng
inherent in the stochastic potential discussed in the ab
two cases are dependent on each other. In order to stud
effect on the mobility of the independent variation of the
two quantities, one might consider the density function to
given by a pulse starting at the values of the variabler , and
spanning a widthw. Thus

l~r !5H 0 for 0,r ,s

s2/w for s,r ,s1w

0 for s1w,r .

~5.6!

The correlation function is given by

c~y!5expH S s

kTD 2F12e2ysS 12e2yw

yw D G J , ~5.7!

and reduces to the single-correlation-length case above in
limit w→0 with s52/l .

VI. APPROXIMATION TECHNIQUES

Exact analytical evaluation of the expression for the m
bility is possible only in a few cases such as for the sing
correlation-length density function. In the other cases it
straightforward to employ numerical procedures since,
like the inverse Laplace transform which we do not requ
in our prescription, the direct transform does not suffer fro
numerical problems such as instability. Asymptotic metho
of the analytical kind we have used in Sec. IV, which a
based on the Laplace method@12#, may also be developed in
a general way as follows.

With the definitionh(y)5(1/kT)2l̃(y), we rewrite the
general expression~2.6! as

c~y!5eh~0!2h~y!, ~6.1!

and note thatc̃(«), the Laplace transform ofc(y), equals
eh(0)I , with the integralI given by

I 5E
0

`

dy exp@2«y2h~y!#. ~6.2!

The exponent in the integrand has an extremum aty5ym ,
given by @13#

Fdh~y!

dy G
y5ym

52«. ~6.3!

The definitiont5y/ym leads to
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I 5ymE
0

`

dt expS 2«ymF t1
h~ tym!

«ym
G D

5ymE
0

`

dt exp@2«ymg~ t !#, ~6.4!

where the last equality definesg(t). We note that at the pea
of g(t), the respective values oft, g(t), andd2g(t)/dt2 are
1, 11h(ym)/«ym , andymh9(ym)/«. The asymptotic evalu-
ation of the mobility is based on the replacement ofg(t) by
its Taylor expansion aroundt51 to second order. If this
approximation is valid, one may extend the limits of integ
tion to infinity, evaluate the Gaussian integral, and obtain

I 5e2[«ym1h~ym!]A 2p

h9~ym!
. ~6.5!

The first of the conditions of validity of this approximation
that the width of«ymg(t) at the peak is small with respect t
the location of the peak from the origin, i.e.,

ymh9~ym!@1. ~6.6!

While Eq. ~6.6! suffices for the asymptotic analysis to b
valid in a number of instances~see, e.g., the discussion
Sec. IV!, it is generally necessary to ensure that terms
order higher than the second make a negligible integratio
the integral. This imposes the additional requirement

1
2 @u«ymd1h@ym~11d!#2h~ym!2 1

2 u, ~6.7!

where 1/d2 equalsymh9(ym). The asymptotic mobility unde
the conditions~6.6! and~6.7!, where the solution of Eq.~6.3!
givesym , is

m5
qt

m«
Ah9~ym!

2p
exp@«ym1h~ym!2h~0!#. ~6.8!

We illustrate the application of the general asympto
formula ~6.8! by comparing the dependence it yields, wi
the exact expression in the single-correlation-length c
~5.2!. The analytical solution for the mobility is Eq.~5.3!.
The application of the asymptotic considerations develo
above leads to

ym5
l

2
lnS 2s2

qElkTD ~6.9!

for the peak valueym . The asymptotic mobility expression i
then

m5
qt

m S kT

pqElD
1/2S 2s2

qElkTD qEl/2kT

e2~s/kT!21qEl/2kT, ~6.10!

the validity conditions being

2kT

qElln2S qElkT

2s2 D !1!
qEl

2kT
,S s

kTD 2

. ~6.11!
-

f
to

e

d

The first and second inequalities in Eq.~6.11! arise, respec-
tively, from Eqs.~6.6! and ~6.7!, and the third from the fact
that ym in Eq. ~6.9! is positive. This case provides an e
ample where condition~6.7! has to be considered separate
as it is not implied by condition~6.6!.

In Fig. 2 we compare the exact and the approximate m
bilities, i.e., Eqs.~5.3! and ~6.10!, respectively@14#. As in
Fig. 1, the disorder parameters/kT is taken to have the
valueA10, and the saturation mobility is 731023 cm2/V s
in keeping with the experimental data on molecularly dop
polymers@4#. The inset shows the field variation of the rat
of the exact mobility as given by Eq.~5.3! to the approxi-
mate value given by the asymptotic expression~6.10!. As
expected, the latter is valid only at high values of the fie
To appreciate the manner in which Eq.~5.3! reduces to Eq.
~6.10! in the high field limit provided the disorder paramet
is large, notice that, for large enough values ofs/kT, the
incomplete gamma function in Eq.~5.3! may be replaced by
the complete gamma function. Withx5qEl/2kT, one iden-
tifies in the denominator of Eq.~5.3! the expressionxG(x) as
G(x). For large enoughx, the Stirling approximation allows
its replacement bye2xxxA2px. The asymptotic expressio
~6.10! follows.

The general form of the correlation function suggests th
in addition to the asymptotic analysis given above, one
use nonstandard procedures such as the one employe
polaron calculations by Silbey and Munn@15#. In the context
of the present calculation, the approximation proced
would express the correlation function as

c~y!'11@1/l̃~0!#@ l̃~0!2l̃~y!#@e~1/kT!2l̃~0!21#

5e~1/kT!2l̃~0!2@1/l̃~0!#@e~1/kT!2l̃~0!21#l̃~y!.

~6.12!

The procedure is patterned after the well known relaxat
time approximation in transport theory@16#. Its essence is
that the evolution ofc(y) from its initial value to its infinite
y value, written as

FIG. 2. Comparison of the exact@Eq. ~5.3!# and asymptotic@Eq.
~6.10!# expressions for the mobilitym(E) in the single correlation
length case of Sec. V. The values of the disorder parameter an
saturation mobility are as in Fig. 1. The inset shows the field va
tion of the ratio of the exact mobility as given by Eq.~5.3! to the
approximate value given by the asymptotic expression~6.10!.
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c~y!5c~`!1@c~0!2c~`!#g~y!, ~6.13!

is approximated by choosing the functiong(y) to be the
function l̃(y)/l̃(0) rather than an exponential which is us
in the relaxation time approximation@16#. Explicitly,

c~y!'c~`!1@c~0!2c~`!#@12 logc~`!c~y!#, ~6.14!

where logc(`)c(y) is the logarithm ofc(y) to the basec(`).
The mobility formula reduces to the approximate version

m5
m`

e~1/kT!2E
0

`

dr l~r !2F e~1/kT!2E
0

`

dr l~r !21

E
0

`

dr l~r !
G eE

0

`

dr
l~r !

e1r

,

~6.15!

which can also be written as

m5
m0

12
m`2m0

m0 F 1

E
0

`

dr l~r !G eE
0

`

dr
l~r !

e1r

, ~6.16!

with the linear response~Kubo! mobility m05 limE→0m(E)
being given by

m05m`e2~1/kT!2E
0

`

dr l~r !5
tq

m
e2~1/kT!2E

0

`

dr l~r !. ~6.17!

Applied to the case of the rectangular pulse, this yields

m~E!5
m0

12@12e2~s/kT!2
#
qE/kT

w
lnF11

w

s1~qE/kT!G
,

~6.18!
.

tt

i.
with «5qE/kT. Note that the numerator in Eq.~6.18! is the
linear response~Kubo! mobility of the system. A study of
Eq. ~6.18! shows that reducing the widthw and reducing the
starting values of the pulse on ther axis both make the
mobility rise steeper as the field is increased.

VII. CONCLUDING REMARKS

Starting from our previous recipe for transforming th
correlation function~1.1! into an expression for the mobility
~1.2!, in this paper we have presented a generalized presc
tion to calculate the field dependence from given charac
istics of linear superpositions of dichotomous potentials. T
prescription provides a useful technique for generat
Gaussian random potentials having desired correlations
adding the contributions of easily generated dichotomous
tentials, the correlation lengths of individual dichotomo
components being chosen from an appropriate density fu
tion. We have given analytic examples of this practical te
nique in the present paper. It is also possible to use it
merically to generate random potentials of desir
characteristics.

Among the useful results that have emerged from
analysis is a derivation of the Poole-Frenkel behavior of
mobility observed in molecularly doped polymers, and
possible generalizations to arbitrary powers. An interest
question to pursue concerns the extent to which physic
occurring stochastic potentials can be approximated ac
rately by superpositions of dichotomous components.
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@3# M. Kuś and V. M. Kenkre, Phys. Rev. B45, 9695~1992!.
@4# See P. M. Borsenberger and D. S. Weiss,Organic Photorecep-

tors for Imaging Systems~Dekker, New York, 1993!, and
references therein; D. M. Pai, J. Chem. Phys.52, 2285
~1970!.

@5# L. B. Schein, Philos. Mag.65, 795 ~1992!; Yu. N. Gartstein
and E. M. Conwell, J. Chem. Phys.100, 9175~1994!; Chem.
Phys. Lett.217, 41 ~1994!; S. V. Novikov and A. V. Vanni-
kov, J. Phys. Chem.99, 14 573~1995!.
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