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Nonlinear field dependence of the mobility of a charge subjected to a superposition
of dichotomous stochastic potentials
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A general prescription is presented to address a large variety of forms of the nonlinear dependence of the
static charge mobility on the applied electric field. The system consists of a classical charge subjected to an
arbitrarily strong steady state electric field and to a stochastic potential consisting of a linear superposition of
an unlimited number of dichotomous potentials in one-dimensional space. It is shown that the nonlinear
mobility can be calculated for arbitrary forms of the density function of the individual dichotomous compo-
nents of the stochastic potential. Specific cases of physical interest are analyzed. One of them provides a
curious possibility for an explanation of the universally observed square root field dependence of the logarithm
of the mobility of photoinjected charge carriers in molecularly doped polynigt63-651X98)09006-0

PACS numbd(s): 05.20-y, 05.60+w

I. INTRODUCTION AND MODEL previously published resultf2,7] describes the nonlinear
mobility w(E) of a classical particle of chargeand massn
In this paper we present a prescription to address the elegroving in an infinite one-dimensional space spanned by the
tric field dependence of the nonlinear static mobility of acoordinatex, and subjected to a random stationary potential
charged particle moving under the action of a class of simpléJ(x) and an external electric field. The mobility, defined
stochastic potentials having certain characteristics describetp the ratio of the velocity of the charge to the fiédis
below. While the contexts in which the calculation and thediven simply in terms of the system correlation function
insights gained from our prescription can be useful are nu-
merous, including the general theory of nonlinear response c(y)=exgU(x+y)/kTlexd —U(x)/kT]. (1.
[1,2] and specific applications to phenomena in ceramic ma-
terials[3], our analysis was motivated by the near-universaiThe overbar in Eg(1.1) represents an ensemble average over
behavior of the mobility of photoinduced charge carrigrs  realizations of the stochastic potentid(x). The assumed
8] observed in molecularly doped polymers. Indeed, it will stationarity of the stochastic process underlying the potential
be seen below that a curious correspondence exists betweensures that the correlation function depends only on the
the so-called Poole-Frenkel behavior of the mobi[iy~7]  differencey in the coordinate values. If the Laplace trans-
and the field dependence relevant to a simple particular caderm of the correlation functioe(y), with e =qE/kT as the
of our general result. Laplace variable, is denoted [mfe), the mobility is given
In the rest of this section we describe the model. In sucexplicitly by
cessive sections, we present our generalized prescription,

which takes one from the density function of the stochastic Lo kT
superposition of potentials to the field dependence of the ME)=—=——= — (1.2
mobility; describe the Poole-Frenkel behavior, and its gener- ec(e) mEf dy e YaEKTe(y)

0

alization, as simple particular cases emerging from our pre-
scription; present other special cases of our formula; and
provide a discussion. Here u., equals the saturation value of the mobility, i.e., the
We have shown recent[y2,8] that a highly useful feature valueq7/m (wherer is the relaxation timewhich it would
of the Kubo formalisni9], i.e., that the response of a system have in the absence of the potential.
to an external stimulus may be expressed completely in Equation (1.2 can be obtained by Brownian motion
terms of system correlation functions calculated in the abanalysis in the limit of high damping: the Langevin equation
sence of the external stimulus, can be retained for certaifor the charge velocity is converted into a Smoluchowski
response situationsven in the fully nonlinear regimehich  equation which is then solved in the steady s{@k This
lies outside the validity of the Kubo formalism. One of our provides a straightforward way of calculating thenlinear
mobility from a given stochastic potentidl through an
evaluation of the correlation functiar(y), and thus has the
*Permanent address: Center for Theoretical Physics, Polish Aca&dvantages of a Kubo-like formalism despite the fact that the
emy of Sciences, Warsaw, Poland. analysis is not restricted to the linear regime.
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In the present paper we consider stochastic potentlals Clearly, A(r) is a weighted density of states differing from
which are constructed from arbitrary linear superpositions othe normalized densityg(r)=limy_..(1N)=N ,8(r—r))
independent dichotomous potentials: merely by a factor associated with the amplitude of the indi-
vidual dichotomous components. We will cal{r) the den-

N . . . .
_ L aAmi(x0) sity function. The correlation function can now be expressed
Ux) U°+i§1 Ai(=Dm, (1.3 as an integral over space:
HereU, is a constant); is the amplitude of théth dichoto- _ sz ayr
mous component of the potential, angdx,,X;) is a random c(y)=exp (1kT) 0 drMn(i—e™)). 2.9

function characteristic of that component. This random func-

tion counts the number of jumpsvhose distribution is as- Equation(2.5 can be expressed in terms of the density

sumed to be uniformthat the particular component of the function A(r) through its Laplace transform with as a

potential makes between the valde and —A; in the inter-  Laplace variable,

val betweerx, andx,. Theith component has the correla-

tion lengthl;, by which is meant that the ensemble average c(y)=exp{(LKT)X(0)—X(y)]}. (2.6)

n;(X2,X1) equals|x,—x4|/1;. It is well known that the indi-

vidual components of the potential are exponentially correThe tilde denotes the Laplace transform.

lated[10]. We have shown elsewhef2] that, for this case, Equation(2.6) or (2.5), along with Eq.(2.4), is one of the

the correlation functiorc(y) appearing in Eq(1.1) has a  primary results of the present paper. It gives a recipe for the

product form arising from the individual components: calculation of the correlation functior(y) from the density
function (r) which characterizes the systdie., the poten-

N tial superposition The correlation function, thus evaluated,
C()/)IiH1 ci(y), (1.4 can then be substituted into expressidm?) to obtain the
- field dependence of the nonlinear mobility. The fully explicit
ci(y)=1+(1—e ¥)sint(A, KT). (1.5 prescription leading from the potential density functiofr)

to the mobility u(E) is
This expression for the correlation function will serve as our

oo * -1
starting point in the present paper. w(E)= ﬂ f dy efqulkTe(l/kT)Zf dr A(r)(1—e™Y")
mE 0 0 '

Il. GENERAL RESULTS (2.7

If we denote the amplitudes of the individual potential  Although the model considered here is restricted to poten-
components byA; /N rather thanA;, and introduce the tials which are linear combinations of dichotomous parts
quantityr;=2/,, we can rewrite Eq(1.5) as with amplitudes small enough to allow the limi; /NkT

<1, it has considerable generality conferred on it by the
ci(y)=1+(1—e Y)sintP(A; /NKT). (2.9 arbitrary nature of the density function(r). The largeN
) o . limit makes the potential a superposition of Ornstein-
We consider the limit of largeN. Specifically, we assume pjenbeck processes. The calculational task in obtaining the
that, for alli, A;/VNkT<L. This allows the replacement of mobility for an arbitrary linear superposition of an infinite
the hyperbolic sine in Eq2.1) by its argument: number of Ornstein-Uhlenbeck processes consists of the
N evaluation of two essentially successive direct Laplace trans-
C(y)=H forms: that of the density functior(r) with the distancey
=1 as the Laplace variable to obtain the correlation function
c(y), and that ofc(y) with qE/KT as the Laplace variable to
Taking the logarithm of both sides of this equation and usingobtain the mobilityu(E).
the fact thatN is large so that I+ (1/N)(A;/kT)?(1

—e ¥")] can be replaced by (W)(A;/kT)*(1—e "), we IIl. POOLE-FRENKEL FIELD DEPENDENCE
obtain FROM AN EXPONENTIAL DENSITY FUNCTION

10 (A,
c(y)zex;{ﬁzl (k_T

We now assume that in the assembly of the dichotomou%ﬂund to be proportional to the square root of the electric
[

potentials which constitutdd(x), all correlation lengths are eld_over a very large range qf fields. The observation has
possible, i.e., that we have a continuous variablehich received a great deal of attention for decades, and has been

extends from O too. We take the limit of infiniteN and recently explained7] satisfactorily on the basis of dipole
- y disorder ideas developed over the years by a number of
introduce the quantity(r) through workers [4—6]. A remarkable consequence of our general

. (2.2

A;\2
k—_l_> (1—6 y')

1+1
N

2 A near-universal observation in molecularly doped poly-

(1—ey”)] (2.3 mers is the Poole-Frenkel behavior of the mobility of photo-
injected charge carriers: the logarithm of the mobility is

N formula (2.7) is that Poole-Frenkel dependence is found to
A(r)= lim (IN)D A28(r—r)). (2.4  be aconsequence of simply assuming the density function of
i=1

the stochastic potential superposition to have what is perhaps

N— o



PRE 58 NONLINEAR FIELD DEPENDENCE OF THE MOBILITY ... 101

the simplest decaying form: an exponential. No dipolar disthe radius of the sphere introduced in Rgf] to take into
order is involved. account the finite size of a transport site, and the consequent
We take the density function to decay inspace with inability of molecular dipoles to approach arbitrarily close to
decay constantr, and to have the integrar® over all r a charge located at such a site. While only the first of the two
space: inequalities comprising Eq3.7) was mentioned explicitly in
Ref.[7], the second inequality is also necessary for a deriva-
N(r)=o%a exp(—ar). (3.D  tion of Poole-Frenkel behavior from dipolar disorder, as is
evident from the discussion in Réf7].

2 . . .
We see from Eq(2.4) thato®, which is given by It is interesting to contrast this derivation of the Poole-

N Frenkel dependence of the mobility on the field with that
o?= lim (1IN) >, Ai2: im[U(y)—Uol%, (3.2 given in Ref.[7]. Our present derivation makes no mention
N— o i=1 N— oo of dipoles, and does not have a cutoff in the correlation func-

tion arising from the finite size of a transport siteoleculg.
is the mean squared amplitude of the dichotomous comporhe cutoff length of Ref[7] corresponds to the exponent of
nents of the stochastic potential, and is thus a measure of thRe r dependence of the density function here. Also, our
disorder in the system. The correlation function is obtainecjerivation arrives directly at an expression for the full corre-
from Eq. (2.6): lation function c(y) rather than at the correlation of the
” guantity U(y) —U(0), which was first obtained in Ref7]
c(y)=exr{<— i L
KT to obtainc(y). As a consequence of the central limit theo-
rem, the stochastic potential in our present case is a Gaussian

_ (3.3 and then followed by an approximate Gaussian prescription
By switching the integration variable tp+«, the Laplace prqocess; arising as it does from a superposition of indepen-

2y

V+a

transform of Eq(3.3) is written as dent Ornstein-Uhlenbeck pieces. Therefore, one obtains the
o0 [a 20 exact_result even if one follows the Gaussian approximation

E(S):ease(tﬂkT)z (_\ﬁ) l(_\/;) used in Ref[7].
kKT Ve KT The present analysis does not provide a real “explana-

tion” of the Poole-Frenkel behavior, since it does not ascribe
(3.4) the behavior to any physical source—only to an assumed

' dependence af(r). Nevertheless, the analysis is intriguing,

particularly in the light of the fact that Poole-Frenkel behav-
whereK is the modified Hankel function. The exact expres-ior appears to have been observed in some systems in which
sion for the mobility is obtained from the reciprocal of Eq. dipolar disorder is abserjtl1]. An understanding of what
(3.4) via the recipe in Eq(1.2). Reduction of that exact physical sources can give rise to an exponential dependence
expression to the Poole-Frenkel form is straightforwardof the density functiorfor any related dependence capable of
when, in Eq.(3.4), o/KT is sufficiently large. In this limit, yielding the Poole-Frenkel behavior through an asymptotic
the integral may be neglected relative to the term proporanalysi$ should provide further insights into the Poole-
tional to K,, because the former decreases exponentiallfFrenkel phenomenon.
with (o/kT)?, whereas the latter decreases exponentially

only with o/kT. Furthermore, when /KT is Iarge,Kl can be IV. ARBITRARY POWERS IN THE FIELD DEPENDENCE
replaced by its asymptotic form to yield FROM BIASED EXPONENTIAL DENSITY
density vanishing at both very small and very large correla-

~ TO\ (o
cle)=\/——=expg|=—+
" NiTode ‘{(kT “
tion lengths, the density function may be represented by a

When the second term in the exponential is small with re- iased exponential
spect to the first, the mobility reduces to the Poole-FrenkeP P

@ 2
_ JO e*syf(a/y)(a/kT) dy

2 If the correlation lengths of the dichotomous components

(3.5 of the potentials are concentrated at a nonzero value, the

form "l
AP =0?=————r"e ", 4.2
3 14 I'in+1
M(E):(q_T) (kT) e—(a/kT)zezaqual(kT)?’ ( )
m/| m2o?qEa where I' is the (complet¢ gamma function. The density
(3.6)  function peaks at=n/a. It yields the correlation function
with the validity condition o2 ol
g 2>—an> KT ’ (3.7 C(Y):exrﬁﬁ) (1_W) ' 4.2
kT kT o '

Exact evaluation of the Laplace transform «fy) in Eg.
Both the mobility expressiofB.6) and the validity condition (4.2) does not appear possible. An asymptotic evaluation
(3.7) are seen to be identical to those derived in Réf.on  may be carried out as follows.
the basis of dipolar disorder arguments, if one makes a single The Laplace transform af(y) is e*l with A=(o/kT)?,
correspondence. This correspondencerisa, wherea is  and the integral given by
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Aar‘H—l

—(y+a)”+1 4.3

= [Layen] ey 2]

The valuey,, at which the argument of the exponent is an
extremum satisfies

Aan+1 1/(n+2)
Ym= . (n+1) —a. (4.9
If our interest is in the limit
Y>> a, (4.5
Eq. (4.4) reduces to
Aa'n+l 1/(n+2)
Ym= . (n+1) (4.6)
The definitiont=y/y,, reduces the integral to
) Aan+l/8ynm+2
| = f dtexp —ey,|t+ ——
Im s p( I (aly )
=ymf0 dt exd —eymg(t)], (4.7)

where the last equality definggt). We see from Eq(4.6)
and from condition(4.5) that

1/(n+1)
g(t)=t+ or) (4.9
At the peak, t=t,=1, g9(t,)=(n+2)/(n+1), and

[d?g(t)/dt?]; =n+2. The replacement of(t) by g(0)
+(1/2)[d?g(t)/dt*];_(t—1)? along with the extension of
the limits of the integral tat «, is possible if

n
eym| 1+3]>1. (4.9
Under this condition,
|= 21 n+2 41
=Ym Vsym(TZ)eX ~eYmr /- (4.10

With the definition B(E,T)=[(qEa/kT)™ D(a/kT)(n
+1)]¥"*2) the mobility is then given by

qr

A /Le—(a/kn% B(E,)[(n+2)/(n+1)]
m YV 27B(E,T) '

u(e)=

(4.11
under the validity condition
2 1o 92 [ (kT 2 1 v+ D
o (MDE | — T
(n+1) 1+§
(4.12

This validity condition is a combination of Eq$4.5 and
(4.9.
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FIG. 1. The density functioR(r), the correlation functioe(y),
and the mobilityw(E) for two values of the exponent(0 and 4 in
the biased exponential case of Sec. IV. The casé) exhibits
Poole-Frenkel behavior identical to that arising from charge-dipole
interactions as in Ref7]. The casen=4 exhibits behavior identical
to that arising from induced charge-dipole interactions also men-
tioned in Ref[7]. The disorder parameter/kT is taken to bey10.
The saturation mobility7/m is taken to be X 1073 cn?/V s.

We see that, for the case=0, for which the biased ex-
ponential density(4.1) reduces to the exponential density
(3.1), the correlation functiori4.2) reduces to Eq(3.3), and
the generalized dependen@11) of the mobility reduces to
Poole-Frenkel behaviof3.6). The validity condition(4.12
reduces to Eq(3.7) for this case.

The primary result we have obtained here is that, if the
observed dependence of the logarithm of the mobility on the
electric fieldE is of the power law formu~expE°®) with
exponent, we can “explain” this behavior by assuming the
density function of the dichotomous components of the sto-
chastic potential to be the biased exponential with(2c
—-1)/(1-c):

acl(l—c)
I Cc
1-c

This density function starts at zerowith zero value, peaks
atr=(2c—1)/(1-c)a, and then decays to zero. In Fig. 1,

)\(F)ZO'Z r(ZC—l)/(l—c)e—ar_ (4_13)
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we display(a) density functions and correlation functions, o\2 [m . yb
and (b) the asymptotic dependence of the mobility on the c(y):ex;{(k—) \ﬁbyeﬂ/z)(yb) erfc( _)
field, for two different values of the exponemt=0 and 4. T 2 V2
The first represents Poole-Frenkel behavior, which arises
from charge interactions with permanent dipoles as in Ref.
[7]. The second exhibits behaviten exponent o instead

of 1 in the field dependengddentical to that arising from The mean value and dispersion of the correlation lengths
induced Charge_dipo|e interactions also mentioned in Reﬂ'_nherent in the stochastic potential discussed in the above
[7]. The values of the disorder parameték T and the satu- two cases are dependent on each other. In order to study the
ration mobility are taken to be/10 and 7x 103 cm?/Vs, effect on the mobility of the independent variation of these
respectively, and the square root of the field is displayed uV0 quantities, one might consider the density function to be
to 1600(V/cm)*2 These values are in keeping with experi- 9iVen by a pulse starting at the valsef the variabler, and
ments on molecularly doped polymer]. In Fig. 1(a), the ~ SPanning a widttw. Thus

density functions are displayed in the main part, and the

. (6.5

C. Rectangular pulse density function

. . . . . 0 for 0<r<s
correlation functions in the inset. The asymptotic depen-
dence of the field is displayed versi&? in the main part of A(r)={ o’lw fors<r<s+w (5.6)
Fig. 1(b) (showing asymptotic linearity fon=0 but not for 0 fors+w<r.

n=4), and versu&€>® in the inset(showing asymptotic lin-
earity forn=4 but not forn=0). While the curvature for
low fields arises from the prefactors becoming important i
that range, the asymptotic formulas are not accurate in that

. 2
region. c(y)=exp{ (%)

V. CORRELATION FUNCTION FOR OTHER
SPECIFIC CASES and reduces to the single-correlation-length case above in the

We present some additional specific cases of the correlalll-mIt w—0 with s=21.

tion functionc(y). They are exact consequences of our for-

r1The correlation function is given by

o) e

yw

mula (2.5). VI. APPROXIMATION TECHNIQUES

_ . Exact analytical evaluation of the expression for the mo-
A. Single correlation length bility is possible only in a few cases such as for the single-
If the potential has a single correlation lengttthe den- ~ correlation-length density function. In the other cases it is
sity function is given by straightforward to employ numerical procedures since, un-
like the inverse Laplace transform which we do not require
N(r)=o?8(r—2/), (5.)  in our prescription, the direct transform does not suffer from
numerical problems such as instability. Asymptotic methods
and the correlation function is of the analytical kind we have used in Sec. IV, which are

based on the Laplace methftP], may also be developed in

c(y)=ex (o/kT)2(1—e~2YM)]. (5.2 a general way as follows.

With the definitionh(y)=(1/kT)?x(y), we rewrite the

The mobility can be calculated explicitly for this cd@and ~ 9eneral expressio2.6) as

may be expressed in terms of the confluent hypergeometric

function ;F, or, equivalently, in terms of the incomplete c(y)=eh@=-hy) (6.2)
gamma functiony(a,x) = [3e~t* dt:

and note that(e), the Laplace transform of(y), equals

(olkT)2 . : \
e~ (oKD eM©y, with the integrall given by

(5.3

2kT7\ [ o |9EVKT
0= T ]

Y(QEI/2KT,(a/kT)?)
= fo dy exd —ey—h(y)]. (6.2

B. Biased Gaussian density function

Another density function which peaks at a noninfinite The exponent in the integrand has an extremurg=ay,
value of the correlation length is given by a biased Gaussiagiven by[13]

2 2
x(r)=(%) r exp[— %(%) (5.4 {dh(y)

. = —€&.
dy Lym
which peaks at=b. The correlation function is given in this

case by The definitiont=y/y,, leads to

6.3
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h(tym)

€Ym

t+

I=ymf dt exr{—sym
0

=ymfwdt exd —eymg(t)],
0

)

(6.9

where the last equality definggt). We note that at the peak
of g(t), the respective values of g(t), andd?g(t)/dt? are

1, 1+h(yw)/eyn, andyyh"(ym)/e. The asymptotic evalu-
ation of the mobility is based on the replacemeng(t) by

its Taylor expansion arount=1 to second order. If this
approximation is valid, one may extend the limits of integra-
tion to infinity, evaluate the Gaussian integral, and obtain

2

h"(Ym)

The first of the conditions of validity of this approximation is
that the width ofey,g(t) at the peak is small with respect to
the location of the peak from the origin, i.e.,

| — e_ [5ym+ h(ym)]

(6.9

Ymh"(Ym)> 1. (6.6

While Eq. (6.6) suffices for the asymptotic analysis to be
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FIG. 2. Comparison of the exaldq. (5.3)] and asymptoti¢Eqg.
(6.10] expressions for the mobility.(E) in the single correlation
length case of Sec. V. The values of the disorder parameter and the
saturation mobility are as in Fig. 1. The inset shows the field varia-
tion of the ratio of the exact mobility as given by E&.3) to the
approximate value given by the asymptotic expres$toh0).

The first and second inequalities in H§.11) arise, respec-
tively, from Eqgs.(6.6) and(6.7), and the third from the fact
thaty,, in Eq. (6.9 is positive. This case provides an ex-

valid in a.nymber of instancesee, e.g., the discussion in ample where conditiof6.7) has to be considered separately,
Sec. V), it is generally necessary to ensure that terms ofg it is not implied by conditior6.6).

order higher than the second make a negligible integration to |, Fig. 2 we compare the exact and the approximate mo-
the integral. This imposes the additional requirement bilities, i.e., Egs.(5.3 and (6.10, respectively[14]. As in
6.7 Fig. 1, the disorder parameter/kT is taken to have the

value /10, and the saturation mobility is3710°3 cn?/V s
where 152 equalsy,h”(yy). The asymptotic mobility under

in keeping with the experimental data on molecularly doped
the conditions6.6) and (6.7, where the solution of E45.3) polymers[4]. The inset shows the field variation of the ratio

of the exact mobility as given by Ed5.3) to the approxi-

%>|8ym5+ hlym(1+ 5)]_h(Ym)_%|,

givesyn, is mate value given by the asymptotic express{6ril0. As
Iy expected, the latter is valid only at high values of the field.
u= :1_8 2:/7”‘ exdeyn+h(ym)—h(0)]. (6.8  To appreciate the manner in which H§.3) reduces to Eq.

(6.10 in the high field limit provided the disorder parameter
] o _is large, notice that, for large enough valuesodkT, the

We illustrate the application of the general asymptoticincomplete gamma function in E¢6.3 may be replaced by
formula (6.8) by comparing the dependence it yields, with {he complete gamma function. With=qEI/2kT, one iden-
the exact expression in the single-correlation-length casgfies in the denominator of E@5.3) the expressionI’(x) as
(5.2). The analytical solution for the mobility is EG5.3.  1(x). For large enough, the Stirling approximation allows
The application of the asymptotic considerations developegg replacement b *x*\27x. The asymptotic expression
above leads to (6.10 follows.

942 The general form of the correlation function suggests that,
for the peak valug,,. The asymptotic mobility expression is

I
qEIkT)

Ym==In in addition to the asymptotic analysis given above, one can
2

use nonstandard procedures such as the one employed in
polaron calculations by Silbey and Mupt5). In the context
of the present calculation, the approximation procedure

(6.9

then would express the correlation function as
1/2 2 El/2kT ~ ~ ~ 25
. q_T( KT ) ( 20 )q (P aEAT (610 o(y)~1+[ 1R (0)JX(0) =K (y)J[e VRO~ 1]
m| mqEl qEIKT :e(l/kn?X(O)_[UX(O)][e(l/kT)?X(O)_1]7\(y)_
the validity conditions being (6.12
2kT qEl o\? The procedure is patterned after the well known relaxation
EIKT <l<57<li7l (6.1)  time approximation in transport theofiL6]. Its essence is
qEIInZ( g ) that the evolution ot(y) from its initial value to its infinite
20 y value, written as
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c(y)=c()+[c(0)—c(=)]g(y), (6.13
is approximated by choosing the functigiy) to be the
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with e =qE/KT. Note that the numerator in E(6.18) is the

linear responséKubo) mobility of the system. A study of
Eq. (6.18 shows that reducing the widtht and reducing the

functionX (y)/X (0) rather than an exponential which is usedstarting values of the pulse on the axis both make the

in the relaxation time approximatidi6]. Explicitly,
c(y)=~c(®)+[c(0)—c(*)][1-10ge.)c(y)],  (6.14

where log,.,c(y) is the logarithm ofc(y) to the basee(x).
The mobility formula reduces to the approximate version

Mo
M ZJoo ’
B (AKkT)2 [ dra(r)_
(1KT)2 | dr n(r) © 0 ' =AM
e 0— e| dr
0 *© 0 e+r
f dr A(r)
0

(6.195
which can also be written as
Mo
= _ , (6.1
N B = an 619
1- - € dre+r
Ho f dr A(r) 0
L JO

with the linear responsé&Kubo) mobility wo=Ilimg_ ou(E)
being given by

_ —(l/kT)ZJ' dr)\(r):T_q —(llkT)zf dr A(r)
M0= M€ 0 me 0 .

(6.17)

Applied to the case of the rectangular pulse, this yields

. Mo
ne 1-[1—e (0/kT? qE/len_1+ w_ |
[ ] w I s+ (qE/KT)]

(6.18

mobility rise steeper as the field is increased.

VIl. CONCLUDING REMARKS

Starting from our previous recipe for transforming the
correlation function(1.1) into an expression for the mobility
(1.2), in this paper we have presented a generalized prescrip-
tion to calculate the field dependence from given character-
istics of linear superpositions of dichotomous potentials. The
prescription provides a useful technique for generating
Gaussian random potentials having desired correlations, by
adding the contributions of easily generated dichotomous po-
tentials, the correlation lengths of individual dichotomous
components being chosen from an appropriate density func-
tion. We have given analytic examples of this practical tech-
nique in the present paper. It is also possible to use it nu-
merically to generate random potentials of desired
characteristics.

Among the useful results that have emerged from our
analysis is a derivation of the Poole-Frenkel behavior of the
mobility observed in molecularly doped polymers, and its
possible generalizations to arbitrary powers. An interesting
guestion to pursue concerns the extent to which physically
occurring stochastic potentials can be approximated accu-
rately by superpositions of dichotomous components.
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