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Nonlinear waves in reaction-diffusion systems: The effect of transport memory
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Motivated by the problem of determining stress distributions in granular materials, we study the effect of
finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We
obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the
system parameters and high enough wave-front speeds. We also generalize earlier known results concerning
the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation
times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.

PACS numbgs): 45.70—n, 81.05.Rm, 61.43.Gt, 81.20.eV

I. INTRODUCTION evolves in time to the traveling wave-front form; that the
speed is related to the steepness of the wave front, slower

Well known in the nonlinear literature is the logistic equa- speeds corresponding to steeper slopes; and that the mini-
tion which, in its continuum form mum speed is given by kDT’ (b).

Our interest in the present paper is in a generalization of
Eqg. (1.4) to include transport memory effects, i.e., effects
that arise if the linear part of the evolution represents a pro-
cess which is in part ballistic and in part diffusive. The
describes the time evolution of the density of quasiparticlesnemory function or correlation function which describes the
or the population of a speciegt), which increaseflinearly)  transport is, in such cases, novdunction as in the purely
due to some mechanism and decredgesadratically due to  diffusive case of Eq(1.4), but has a finite decay timig].
another,k and b being appropriate constants. Ubiquitous in The diffusive process may arise from the motion and scatter-

du

dtzku(b—u), (1.1

traditional transport is the diffusion equation ing of quasiparticles, the decay time being descriptive of the
time between scattering events. The diffusion equation de-
au 5 d%u 1.2 scribes the extreme situation in which that time is infinitesi-

mally short. Since all realistic systems possess a finite scat-
tering time, it is of interest to examine the intermediate, or
which describes diffusive transport of the quantig,t) in general, case. _Such genera! invgstigati_ons of memory effects
spaceD being the diffusion constant. Solutions of E¢s.1) have resulted in advances in widely different areas such as
or (1.2) are well known analytically for arbitrary initial con- €Xciton transport3] and stress distributiof4].

at ox?’

ditions, but solutions of the Fisher equatith?] The motivation for our in_ves_tigation ha_\s come from the
appearance of stress distribution equations with memory

au 92U which arise in granular materials and will be commented
E=Dﬁ+ku(b—u), (1.3  upon in the conclusion section. Our studies lead to a gener-

alization of results known earlier in the extreme diffusive
limit, as well as to additional and interesting effects particu-

which combines Eqg(1.1) and (1.2), are not. The study of |5, t5 finite correlation time systems.

Eq. (1.3), and of its generalization

Ju 2 II. ANALYTIC APPROACH AND GENERAL SOLUTIONS

§:D§+kf(“)' 1.4 Consider the replacement of the diffusion equatidrp)

by its nonlocal(in time) counterpart

where f(u) is a nonlinear function, belongs to the area of )
reaction diffusion. There has been a lot of work in the area, o _ thqﬁ(t—s) J°u(x,s) q
much of it numerical. For instance, it is known that nonlinear ot 0 952
wave fronts form which maintain their shape desgiie

some sensbecause Ofthe diffusive element of the evolu- where the so-called memory functief(t) describes the fi-
tion, contrary to linear intuition. It is also known that stable niteness of the correlation or scattering tif8¢ For simplic-
traveling-wave solutions exist with speeds equaling or exity, let us take the memory to consist of a single exponential:
ceeding a minimum value; that ff(u) has two zeros, at o(t)=ae . The quantitya measures the reciprocal of the
=0 andu=b, as in the case being investigated in the presenscattering or correlation time. In the limit— o, the memory
paper, an initial shape which on the two sides of a finitefunction becomes & function and one recovers the local
segment in space equals the two zero$(of), respectively, diffusion equation, whereas, in the limit—0, D—w, aD

S, (2.1
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1(u)
o

FIG. 1. The nonlinearity functiofi(u) in the
piecewise linear form used for analytic calcula-
tions in the present papésolid line). The Fisher

term (dashed ling is symmetrical but in our
analysis we take, the value ofu at which the
nonlinerity peaks, and, the second zero df(u),
to be independent of each other.

u

—v? (wherev is the wave spegdthe memory function be-

patterns in reaction-diffusion systems. Our contribution in

comes a constant, and one obtains pure undamped linetire present analysis is to apply a similar approach to inves-
waves. Finitea and v describe the intermediate situation. tigate memoryeffects.

The diffusion equatior{1.2) is then replaced by the telegra-

We do not address the general initial value problem re-

pher's equation. Our starting point in this paper is the genlated to Eq.(2.2). Instead, our interest is in finding only

eralization of the usual reaction-diffusion equatidn) to

. Ju Zﬁzu+ 2
— =p2— +s%f(u
YotV e (u)

J%u

ﬁ (2.2

traveling-wave solutions of Eq2.2). We will take them to
move in the direction of increasing
u(x,t)y=U(x—ct)=U(2), (2.4

wherec is the speed of the nonlinear traveling wate be

whose transport component is the telegrapher's equatiodlifferentiated from the naturdihear speedv dictated by the

rather than the diffusion equation. Heeeis a constant that

medium. Denoting differentiation with respect ta by

describes the strength of the nonlinearity in the system, angrimes, we reduce the partial differential equati@r) to an

is related tok in Eq. (1.4) through the limit a—0, s

ordinary differential equation formally descriptive of a

—, s2/a—k. The telegrapher’s equation without the non- damped harmonic oscillator

linearity has been recently applied successf(iy to the
description of observationfs,6] of stress distributions in

granular materials. In that application the vertical depth in

the granular compact plays the role of time.

mU"+2I'U’+k3U=0, U=<a

(2.9

mU"+2I'U" +k3(b—U)=0, U=a.

We are thus interested in investigating effects of finite

correlation time (intermediate transport memoryon the

propagation of nonlinear wave fronts. Our approach will b
analytical rather than numerical. This is made possible by th

assumption that the nonlinear functié(u) is a piecewise
linear function. The logistic term i1.3) may then be ap-
proximated by(see Fig. 1

u
—, UuU<a
a

f(u)= (2.3
b—u
- =
b—a’ u=a

a andb being the values af at which the nonlinearity peaks

and vanishes, respectively. Such a piecewise linear approach

has been introduced earligtQ] in the context of diffusive

e,

In Eqg.(2.5), the massn of the fictitious oscillator arises from
the difference in the wave-front speed and the linear wave
%peed dictated by the medium, while the frequency of the
oscillator arises from the strength and shape of the nonlin-
earity. The parameters in E(R.5) are given by

I'=cal2,

k’=s’/a, ki=s%(b—a).

(2.6

m=uv2-c?,

The solution for the wave amplitudg as a function of
the coordinatex— ct is available immediately in each of the
two regionsU<a andU=a [7]. In the regionU<a, the
solutions are

U(z)=Aglki2nz 2.7

processes and has been shown to lead to analytical results ibrm=0 and
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A,e +Z+A_e % ro#r_ Our result(3.3) is a generalization to finite correlation
U(z)= (2.9  times of the minimum speed result known in the literature in
Age?+Aze?, ro=r_=r the context of diffusive transport to which E.3) reduces
in the limit a—, s—», s’/a=k, v?/a=D. This diffu-
if m#0. Here sive extreme of Eq(3.3) is
r ~T+\T2-mk 2.9 Cmin=2VkD/a. (3.9
m For this positivem case we are considering, in which the
In the regionU=a, on the other hand, wave-front speed never exceeds the medium dictated speed
v, the oscillator describing the left side of the wave front
U(z)zb—Ce(kg’Zr)z (2.10  shape has negative mgsee Eq(3.2)]. The slope assumed
at z=0 is negative. The situation is thus that of a negative
if m=0 and mass particle thrown towards its “equilibrium” point, its
. . momentum being _depleted by the antirestoring_ac_tion of_the
()= b—C,e™+*-C_e"% R,#R_, .19 force until the particle comes to rest at the equilibrium point.
b—Ceef*~C,;ze?, R,=R_=R If the particle were to overshoot the equilibrium point, the

negativity of the mass would send it infinitely far from the

if m#0. Here equilibrium point. Since the corresponding infinite solutions
are of no interest in our present investigation, we conclude

_—I=TP+mig (2.1 thatthe behavior ob, shows no oscillations.
= m ' ' If we now consider the case when the wave-front speed

exceeds the medium dictated spestdis negative, and the
If we impose the natural requirements thatand U’ are Uy oscillator in(3.2) has negative mass. As in thg case
continuous andJ=0 and bounded, which apply § is the  above, there are no oscillations on the right side of the wave-
density of some quasiparticle, a probability, or a speciesront shape. Th&J, oscillator now has positive mass. It can
population, and, furthermore, if we require thét0)=a, we  be underdamped since there is no problem in the density
obtain explicit expressions from the above. We analyze therexhibiting oscillations around the positive valbeThe con-
in the next two sections. dition of critical damping for this left oscillator idl’

= \[mlk,, the corresponding wave-front speed being
I1l. DAMPED HARMONIC OSCILLATORS OF NEGATIVE

MASS AND SPECIAL VALUES OF THE Cosc=v[1—(b—a)(al2s)?] V2 (3.9

WAVE-FRONT SPEED o
If the speed exceeds,., the wave-front shape exhibits os-

We introduce two quantitiedg andU, via cillations in space.
For any given set of the system parametersy, s, a, b,
there is always a minimum speed,;, given by Eq.(3.3).
3.1 However, the existence af,.., i.e., of shape oscillations,
requires a condition to be satisfied by the parameters

Ugr(z)=U(z), z=0
U (-2)=b—-U(z), z=0.

Equationg2.5) can then be written formally as the evolution 25> a(b—a)l'2 3.6
equations describing two damped harmonic oscillators one of @ ' '

which has positive mass while the other has negative masss (3.6) is not satisfiede, is effectively infinite, and there

" f L2 are no oscillations in the wave shape. Also, in the limit
mUj+ 2T U+ k2UR=0, y1ons yvave shape. /A ;
(3.2 —o0, s—oo, s°/@=const, v/ a=const, which corresponds
—mU’L’+2FUL+k§UL=O. ' to diffusive transport analyzed in the earlier literatucg,.

becomes infinitely large signifying that spatial oscillations

The wave-front shape is given hyg(x—ct) for x=ct and  never set in. For the opposite transport extreme in which
by b—U, (ct—x) for x<ct. Several interesting results =0, and the linear part of the evolution is an undamped
emerge immediately. wave equation, Eq$3.3) and(3.5) show thatc,g.,Cnyin and

Becauseu describes a density or population, it cannot bethe medium speed all become identical to one another. The
negative. It follows that ifm is positive, the damped har- shape always exhibits oscillations. Figure 2 shows the depen-
monic oscillator representing the wave-front shape stor dence ofc,sc andcp,, on the damping rate/2s. While our
=ct must be overdamped or critically damped. This is necEg. (3.3) is merely a generalization to finite correlation times
essary because, the equilibrium value of that oscillator amof Ed. (3.4) known in the literature earlier, we believe our
plitude being zero, underdamping would make the amplitudéesults concerning the possible existencenf, and of spa-
go negative. The condition of no underdamping on the equatial oscillations, in particular Eq$3.5) and(3.6), are entirely
tion for Ug in Eq. (3.2), viz., I =k, \/m, sets the requirement new. They stem from the wave component of the telegra-
that the wave-front Speed must exceed or equa| a minimurﬁher,s equation manifested in the Spatial oscillations of the

valuecpy, given by wave-front shape. ' '
Explicit solutions for the various cases in terms of the

Cmin=v[1+a(al2s)?] /2, (3.3  parameters in Eq(2.6) are best presented by appealing to
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Oscillation Speed (¢, /V)

FIG. 2. The dependence of the respective ra-
tios of cnin and Cysc to the medium dictated
speedv on the damping-nonlinearity parameter
ratio a/2s. It is seen that the minimum speed de-
creases monotonically. The oscillatory speed has,
however, a characteristic value af2s where it
diverges. Beyond that value, the oscillatory speed
is, in effect, infinite.

| Minimum Speed (¢_. /V)

'min

(b-ay™2 0/2s >
Fig. 3, which describes the positioning of the wave-front (b—a)R, +ar,
speed relative to the three characteristic valiresscending C_ T R _-R___
orded Cpin, U, Cose. IN region I,v>c>cyi,, Mis positive, o
and we obtain from E¢(2.8) In region Ill, c>c,s. and R, is complex, giving rise to
s s spatial oscillations on the left side. We exprd®s as R
U(z)= Aet+Ae-t, z=0 (37  *i2m/\ and obtain
b—(b—a)e®+?, z=<0, '
ae'+%  z=0
where U(z)= b—a 2 3.9
2) ——6echos<Tz—5 , z<0 39
_ar_+(b—a)R. cos
" r-—ry ' The wavelength\ and the phasé are given by
ar,+(b—a)Ry 47(c?—v?)
A,=#. A= > ) (3.10
+ - \/4(C2—v2)k2—a2C2
In region Il, c,sc>Cc>v, Mis negative, and N
5=—tan | =———[ar,+(b—a)R]|. (3.1
ae'+?,  z=0 27r(b—a)[ + )R] (3.19
U(z)= (3.9
b—C.e%?-C_eR? z=<0, At the three boundaries of the regions,
where e [aerz+(ar—(b—a)R+)zefZ, z=0 (3.12
)=V . Rz .
_(b—a)R_+ar+ b—(b—a)e™+?* z=<O0
" R.-Ry 7 whenc=cpin;
| ] n
i f | |
0 crnin v cosc
c—o

FIG. 3. Regions of the wave-front speedThe speed cannot be lower thag;,. Solutions have different shapes according to whether
c lies betweerc,;, and the medium dictated speedbetween the latter and,., larger thanc,s., or on the boundaries separating these
regions. The explicit expressions are displayed in the text in reference to these regions.
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15F i
g ]
o5 .
' Fa— 0 20 20 o 20 Py %0 20 100 FIG. 4. _Two examples_ of the_ wave?front
z shape:(a) without and (b) with spatial oscilla-
tions. Values of the parameters are arbitrary:
25 T T T T T T T T T =10, «=5, s=3, a=1, b=2 in both(a) and
, (b); the speed=9 in (a) andc=18 in (b).
_ 15 .
E
=1
1 - -
o5 E
Soo -slo -6I0 41'0 -z;o clx 20 4|o slo s'o 100

ae*(kf’zr)z, z=0 (3.13
U(z)= 3.1
2 b—(b—a)el)z  z<0
whenc=v; and
ae'+%, z=0
U(Z): _ _ Rz _ z
b—(b—a)eR*+[ar, +(b—a)R]zeR% z<0
(3.19

whenc=cCgq.
The above solutions, whose two typical shapegh and

without spatial oscillationsare shown in Fig. 4, allow us to

z=0 or z=0 expressions from the explicit solutions accord-
ing to convenience. We see that the slope is giveraby
whenc>v and by—(b—a)R, whenc<uwv. Using the defi-
nitions forr , in Eq. (2.8) and forR, in Eq.(2.11), we have

—(b—a)[-T+\I'?+mk]/m, c<v
U'(0)=4 —aké/al', c=v
a[-T+\I2—mk]/m, c>v.
(3.19

The slope-speed relatidB.15 that we obtain in the pres-

examine analytically the relationship between the shape ofnce of finite transport correlation times is found to have a
the wave front and its dynamics, specifically the speed deeonsiderably richer structure than what is known in the dif-
pendence of the front steepness and of the front wavelengtfusive extreme. In that extreme, the slope is a monotonically
Since the slopes are matchedzatO, we may use either the decreasing function of the speed

Diffusive Limit

0.6

e
3]

o
~

Magnitude of slope at z =0
o
®

o
h

0.4

FIG. 5. The variety of behavior of the slope-
speed relationship in the presence of finite trans-
port correlation times. The insdtith coordi-
nates on both axes identical to those on the main
figure) shows the diffusive limit which is well
known in the literature.
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| |

| |

| |

: : FIG. 6. Different dependences of the slope on

| | the speed according to the value of the parameter
I I c, . See text for details.

| |

0 c

c 4Dk i_s all _that remains._ The_ introduction of finif[e qorrelation
U'(0)=—(b—a)=<| -1+ \/————|. (3.16 times into the reaction diffusion problem, which is the pur-
2D (b—a)c? pose of the present study, is thus seen to uncover an unex-
pectedly large variety of behavior in the shape-speed depen-
This simple behavior is seen in the inset in Fig. 5. Fordence of the wave front. We present Fig. 7 to show how this
finite @, however, the slope can display nonmonotonic be-correlation timelequivalently its reciprocal, the damping pa-
havior as seen in the main Fig. 5. There is a kink in therametera) controls the slope.
slope-speed plot at=v. For the region in which the wave- In the case when spatial oscillations are present in the
front speed is larger than the medium-dictated speed, th&ave front, the dependence of the oscillation wavelength on
slope decreases with increasing speed. At the point the twie wave speed is given by E(8.10. We plot it in Fig 8.
speeds equal each other, there is a discontinuity in the cul/e see that the behavior is not monotonic, there being a
vature. If the wave-front speed is smaller thgrwe find that ~ MiNIMumM V;"Uez of the wavelength given by n,
two subregions have to be considered according to whether 8mav/(4k;—a®). . .
the inequality The solutions given above deal exclusively with fronts
that decay to zero at their leading edge. For the most part,
a?(b—a)=2s? (3.17  these are the only fronts that exist, because solutions that do
not decay to zero as—« tend to diverge. However, if we
is, or is not, satisfied. If it is satisfied, the slope continues tdhave an oscillating solution, the divergence need not neces-
increase. Otherwise, the graph appears similar to a parabogarily occur. We can then have nondecaying wave trains that

whose minimum occurs when extend to infinity in each direction. There is no unique solu-
tion associated with each speed, each solution has a different
c—c. = b_aac (3.18 slope atz=0, and the previous discussions on the relation
* 2s osc: ) between steepness and speed have no relevance to these

wave-train class of solutions. Nevertheless, the speed does
Figure 6 clarifies the various shapes the slope-speed relatiatetermine the wavelengths If the correlation time is infi-
can exhibit in different ranges of the parametgr. In the nite, i.e., in the limita— 0, we havec,;,=Cysc=v, and the
diffusive limit, the location of the minimum tends to infinity solution becomes a step functidh(z)=b®(—z) whenc
on thec axis, with the result that two of the three regions =y. Whenc>v, the solution is either a pulse or a wave
disappearc is always smaller than (which tends to infinity  train. The pulse solution is symmetric about its maximum
in the diffusive limif, and a monotonic decrease of the slopeand may be determined analytically,

03 T T T T T T T
0.2

_ o= 4583 FIG. 7. The dependence of the slope of the

o . .

5 wave front on the transport correlation time. Plot-
ted is|U’(0)| versusa for v=10, s=3, a=1,
andb=2.

a=7
01f .
06 07 08 0.9 1 14 12 13 14 15
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FIG. 8. Dependence of the wavelengthon
the wave-front speed for pulse solutions for the
case in which spatial oscillations occur. The
parameters are =10, =5, s=3, a=1, and
b=2.

In contrast to Eq(3.10 and Fig. 8, we see that in the case of
these infinite wave trains, the wavelength does increase
monotonically with speed.

The pulse solution, and a wave-train solution which is
determined numerically, are displayed in Fig. 9. The two
have identical wavelengths in the oscillating regime.

IV. DISCUSSION

In this concluding section we discuss the original motiva-
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|
|
|
|
1 I 1 i
1 CordV o 3 5
ae #+% z=0
U -2 2 od 2T, s 0
z)= ——— 08 —2z—§|, z1=z<
(2) cosé A 1
aerz ) z<z,
(3.19
where
5=—tan | \/i— 26 (3.20
=—tan — |, 2,=26, }
b—a L

and the wavelength of the oscillating term is given by

1

c’—v?. (3.21)

A= 27Tk2

tion for the research reported in this paper and summarize
our primary results.

Transport equations such as the telegrapher’'s equation
with nonlinear additive terms as in E(.2) have appeared
recently[4] in our analysis of the distribution of stress in
granular compacts. The memory, which is spatial in the
granular context rather than temporal as in the present analy-

U(z)

FIG. 9. Wave-train solutions extending to in-

. finity in each direction found by numerically de-
terming the coefficients of the general solution.
The parameters are=10, a«=0, s=3, a=1,

7 and b=2. The inset(with coordinates on both
axes identical to those on the main figudepicts

the wave-pulse solution for the same parameters.

-20 0 20 40 60 80 100 120

140 160
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sis, arises from characteristics of the granular material sucgroup belong the possible existence of a speed beyond which
as grain size, grain shape, and friction. The nonlinear termspatial oscillations appear in the wave-front shape, the cor-
arise from the feedback provided by the dependence of theesponding expressid3.5), the condition(3.6), the relation-
material density on the stref8]. Our original motivation for  ship (3.10 of the speed of the wave front to the wavelength
this work stemmed from the possibility that the combinedof the spatial oscillations, and the appearance and character-
effect of the memory and nonlinearity on the stress distribuistics of wave trains of infinite extension. Other interesting
tion might be related to arches in granular compacts. Théeatures of the analysis include the emergence of the damped
coordinatet in the present analysis corresponds to the spatiaharmonic oscillators with negative mass that facilitate an un-
coordinate in the vertical directiotthe direction of gravity derstanding of the results. Basic to the fact that our analysis
and/or that of the applied pressura the granular compact. is analytical is the approadii0] of the piecewise linear rep-
The quantityu here refers to the stress in the compact. Theresentation of the nonlinearity. We mention in passing that,
specific form of the nonlinear terms derived[#] is not that so long as the memory function used in the analysis is
of f(u) and does not appear to lead to the formation ofMarkoffian, i.e., has a finite value for its integrff ¢(t),
nonlinear waves. However, it is know8] that granular ma- there are no additional contributions to pattern formation of
terial columns which are tall enough are self-supporting as aur analysis over earlier resulf0] based on the diffusive
result of the friction along the sides of the container. Thisextreme. The generalization of the usual reaction-diffusion
observation leads on qualitative grounds to equations of thequation(1.4) to the form (2.2) that we have used in the
type analyzed in the present paper. Nevertheless, becaupgesent investigation is obviously not unique, our present
important issues concerning the relevance of the analysis tehoice having been dictated by analytic tractability.
actual observations in granular materials remain to be clari- In closing, we raise the following question. Is it perhaps
fied, we postpone a detailed discussion in the granular corpossible that when observations in systems are interpreted on
text. the basis of linear intuition to correspond to certain signal
The point of departure of the present paper is &2).  speeds and conclusions are drawn on the basis of the obser-
The primary results we have obtained are of two kinds. Theyations about the medium speed gross overestimates or
first group constitutes generalizations of results known earunderestimates might be occuring because the system is non-
lier for the diffusive extreme but now extended to cover fi- [inear, the signal speed beingrather thanv? It is to be
nite correlation times. The second group contains results naioted that the nonlinear speedan have an arbitrarily large
known earlier. To the first group belong the appearance ofalue dictated only by the wave-front shape.
nonlinear wave fronts, the generalized form of the minimum
speed that the wave fronts take, particularly its dependence
(3.3 on the nonlinearity parameteasands as well as on the
correlation parametet, and the unexpectedly rich relation-  This work was supported in part by Sandia National
ship (3.15 of the speed of the wave front to its shape with Laboratories under Department of Energy Contract No. DE-
explicit dependence on the correlation time. To the secondC04-94A85000.
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