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Nonlinear waves in reaction-diffusion systems: The effect of transport memory

K. K. Manne,1 A. J. Hurd,2 and V. M. Kenkre1
1Center for Advanced Studies and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexic

2Sandia National Laboratories, Albuquerque, New Mexico 87185
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Motivated by the problem of determining stress distributions in granular materials, we study the effect of
finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We
obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the
system parameters and high enough wave-front speeds. We also generalize earlier known results concerning
the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation
times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.

PACS number~s!: 45.70.2n, 81.05.Rm, 61.43.Gt, 81.20.eV
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I. INTRODUCTION

Well known in the nonlinear literature is the logistic equ
tion which, in its continuum form

du

dt
5ku~b2u!, ~1.1!

describes the time evolution of the density of quasipartic
or the population of a speciesu(t), which increases~linearly!
due to some mechanism and decreases~quadratically! due to
another,k and b being appropriate constants. Ubiquitous
traditional transport is the diffusion equation

]u

]t
5D

]2u

]x2
, ~1.2!

which describes diffusive transport of the quantityu(x,t) in
space,D being the diffusion constant. Solutions of Eqs.~1.1!
or ~1.2! are well known analytically for arbitrary initial con
ditions, but solutions of the Fisher equation@1,2#

]u

]t
5D

]2u

]x2
1ku~b2u!, ~1.3!

which combines Eqs.~1.1! and ~1.2!, are not. The study o
Eq. ~1.3!, and of its generalization

]u

]t
5D

]2u

]x2
1k f~u!, ~1.4!

where f (u) is a nonlinear function, belongs to the area
reaction diffusion. There has been a lot of work in the ar
much of it numerical. For instance, it is known that nonline
wave fronts form which maintain their shape despite~in
some sensebecause of! the diffusive element of the evolu
tion, contrary to linear intuition. It is also known that stab
traveling-wave solutions exist with speeds equaling or
ceeding a minimum value; that iff (u) has two zeros, atu
50 andu5b, as in the case being investigated in the pres
paper, an initial shape which on the two sides of a fin
segment in space equals the two zeros off (u), respectively,
PRE 611063-651X/2000/61~4!/4177~8!/$15.00
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evolves in time to the traveling wave-front form; that th
speed is related to the steepness of the wave front, slo
speeds corresponding to steeper slopes; and that the m
mum speed is given by 2AkD f8(b).

Our interest in the present paper is in a generalization
Eq. ~1.4! to include transport memory effects, i.e., effec
that arise if the linear part of the evolution represents a p
cess which is in part ballistic and in part diffusive. Th
memory function or correlation function which describes t
transport is, in such cases, not ad function as in the purely
diffusive case of Eq.~1.4!, but has a finite decay time@3#.
The diffusive process may arise from the motion and scat
ing of quasiparticles, the decay time being descriptive of
time between scattering events. The diffusion equation
scribes the extreme situation in which that time is infinite
mally short. Since all realistic systems possess a finite s
tering time, it is of interest to examine the intermediate,
general, case. Such general investigations of memory eff
have resulted in advances in widely different areas such
exciton transport@3# and stress distribution@4#.

The motivation for our investigation has come from t
appearance of stress distribution equations with mem
which arise in granular materials and will be comment
upon in the conclusion section. Our studies lead to a ge
alization of results known earlier in the extreme diffusi
limit, as well as to additional and interesting effects partic
lar to finite correlation time systems.

II. ANALYTIC APPROACH AND GENERAL SOLUTIONS

Consider the replacement of the diffusion equation~1.2!
by its nonlocal~in time! counterpart

]u

]t
5DE

0

t

f~ t2s!
]2u~x,s!

]s2
ds, ~2.1!

where the so-called memory functionf(t) describes the fi-
niteness of the correlation or scattering time@3#. For simplic-
ity, let us take the memory to consist of a single exponent
f(t)5ae2at. The quantitya measures the reciprocal of th
scattering or correlation time. In the limita→`, the memory
function becomes ad function and one recovers the loc
diffusion equation, whereas, in the limita→0, D→`, aD
4177 © 2000 The American Physical Society
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FIG. 1. The nonlinearity functionf (u) in the
piecewise linear form used for analytic calcul
tions in the present paper~solid line!. The Fisher
term ~dashed line! is symmetrical but in our
analysis we takea, the value ofu at which the
nonlinerity peaks, andb, the second zero off (u),
to be independent of each other.
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→v2 ~wherev is the wave speed!, the memory function be-
comes a constant, and one obtains pure undamped li
waves. Finitea and v describe the intermediate situatio
The diffusion equation~1.2! is then replaced by the telegra
pher’s equation. Our starting point in this paper is the g
eralization of the usual reaction-diffusion equation~1.4! to

]2u

]t2
1a

]u

]t
5v2

]2u

]x2
1s2f ~u! ~2.2!

whose transport component is the telegrapher’s equa
rather than the diffusion equation. Here,s is a constant tha
describes the strength of the nonlinearity in the system,
is related to k in Eq. ~1.4! through the limit a→0, s
→`, s2/a→k. The telegrapher’s equation without the no
linearity has been recently applied successfully@4# to the
description of observations@5,6# of stress distributions in
granular materials. In that application the vertical depth
the granular compact plays the role of time.

We are thus interested in investigating effects of fin
correlation time ~intermediate transport memory! on the
propagation of nonlinear wave fronts. Our approach will
analytical rather than numerical. This is made possible by
assumption that the nonlinear functionf (u) is a piecewise
linear function. The logistic term in~1.3! may then be ap-
proximated by~see Fig. 1!

f ~u!55
u

a
, u<a

b2u

b2a
, u>a

~2.3!

a andb being the values ofu at which the nonlinearity peak
and vanishes, respectively. Such a piecewise linear appr
has been introduced earlier@10# in the context of diffusive
processes and has been shown to lead to analytical resul
ar

-

n

d

n

e
e

ch

for

patterns in reaction-diffusion systems. Our contribution
the present analysis is to apply a similar approach to inv
tigatememoryeffects.

We do not address the general initial value problem
lated to Eq.~2.2!. Instead, our interest is in finding onl
traveling-wave solutions of Eq.~2.2!. We will take them to
move in the direction of increasingx,

u~x,t !5U~x2ct!5U~z!, ~2.4!

wherec is the speed of the nonlinear traveling wave~to be
differentiated from the naturallinear speedv dictated by the
medium!. Denoting differentiation with respect toz by
primes, we reduce the partial differential equation~2.2! to an
ordinary differential equation formally descriptive of
damped harmonic oscillator

mU912GU81k1
2U50, U<a

~2.5!
mU912GU81k2

2~b2U !50, U>a.

In Eq. ~2.5!, the massm of the fictitious oscillator arises from
the difference in the wave-front speed and the linear w
speed dictated by the medium, while the frequency of
oscillator arises from the strength and shape of the non
earity. The parameters in Eq.~2.5! are given by

m[v22c2, G[ca/2, k1
2[s2/a, k2

2[s2/~b2a!.
~2.6!

The solution for the wave amplitudeU as a function of
the coordinatex2ct is available immediately in each of th
two regionsU<a and U>a @7#. In the regionU<a, the
solutions are

U~z!5Ae(k1
2/2G)z ~2.7!

if m50 and
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U~z!5H A1er 1z1A2er 2z, r 1Þr 2

A0erz1A1zerz, r 15r 25r
~2.8!

if mÞ0. Here

r 65
2G6AG22mk1

2

m
. ~2.9!

In the regionU>a, on the other hand,

U~z!5b2Ce(k2
2/2G)z ~2.10!

if m50 and

U~z!5H b2C1eR1z2C2eR2z, R1ÞR2 ,

b2C0eRz2C1zeRz, R15R25R
~2.11!

if mÞ0. Here

R65
2G6AG21mk2

2

m
. ~2.12!

If we impose the natural requirements thatU and U8 are
continuous andU>0 and bounded, which apply ifU is the
density of some quasiparticle, a probability, or a spec
population, and, furthermore, if we require thatU(0)5a, we
obtain explicit expressions from the above. We analyze th
in the next two sections.

III. DAMPED HARMONIC OSCILLATORS OF NEGATIVE
MASS AND SPECIAL VALUES OF THE

WAVE-FRONT SPEED

We introduce two quantitiesUR andUL via

UR~z![U~z!, z>0
~3.1!

UL~2z![b2U~z!, z>0.

Equations~2.5! can then be written formally as the evolutio
equations describing two damped harmonic oscillators on
which has positive mass while the other has negative m

mUR912GUR81k1
2UR50,

~3.2!
2mUL912GUL81k2

2UL50.

The wave-front shape is given byUR(x2ct) for x>ct and
by b2UL(ct2x) for x<ct. Several interesting result
emerge immediately.

Becauseu describes a density or population, it cannot
negative. It follows that ifm is positive, the damped har
monic oscillator representing the wave-front shape forx
>ct must be overdamped or critically damped. This is n
essary because, the equilibrium value of that oscillator a
plitude being zero, underdamping would make the amplitu
go negative. The condition of no underdamping on the eq
tion for UR in Eq. ~3.2!, viz., G>k1Am, sets the requiremen
that the wave-front speed must exceed or equal a minim
valuecmin given by

cmin5v@11a~a/2s!2#21/2. ~3.3!
s

m

of
s,

-
-
e
a-

m

Our result ~3.3! is a generalization to finite correlatio
times of the minimum speed result known in the literature
the context of diffusive transport to which Eq.~3.3! reduces
in the limit a→`, s→`, s2/a5k, v2/a5D. This diffu-
sive extreme of Eq.~3.3! is

cmin52AkD/a. ~3.4!

For this positivem case we are considering, in which th
wave-front speedc never exceeds the medium dictated spe
v, the oscillator describing the left side of the wave fro
shape has negative mass@see Eq.~3.2!#. The slope assumed
at z50 is negative. The situation is thus that of a negat
mass particle thrown towards its ‘‘equilibrium’’ point, it
momentum being depleted by the antirestoring action of
force until the particle comes to rest at the equilibrium poi
If the particle were to overshoot the equilibrium point, th
negativity of the mass would send it infinitely far from th
equilibrium point. Since the corresponding infinite solutio
are of no interest in our present investigation, we conclu
that the behavior ofUL shows no oscillations.

If we now consider the case when the wave-front spe
exceeds the medium dictated speed,m is negative, and the
UR oscillator in ~3.2! has negative mass. As in theUL case
above, there are no oscillations on the right side of the wa
front shape. TheUL oscillator now has positive mass. It ca
be underdamped since there is no problem in the den
exhibiting oscillations around the positive valueb. The con-
dition of critical damping for this left oscillator isG
5Aumuk2, the corresponding wave-front speed being

cosc5v@12~b2a!~a/2s!2#21/2. ~3.5!

If the speed exceedscosc, the wave-front shape exhibits os
cillations in space.

For any given set of the system parametersv, a, s, a, b,
there is always a minimum speedcmin given by Eq.~3.3!.
However, the existence ofcosc, i.e., of shape oscillations
requires a condition to be satisfied by the parameters

2s.a~b2a!1/2. ~3.6!

If ~3.6! is not satisfied,cosc is effectively infinite, and there
are no oscillations in the wave shape. Also, in the limita
→`, s→`, s2/a5const, v2/a5const, which correspond
to diffusive transport analyzed in the earlier literature,cosc
becomes infinitely large signifying that spatial oscillatio
never set in. For the opposite transport extreme in whicha
50, and the linear part of the evolution is an undamp
wave equation, Eqs.~3.3! and~3.5! show thatcosc,cmin and
the medium speedv all become identical to one another. Th
shape always exhibits oscillations. Figure 2 shows the dep
dence ofcosc andcmin on the damping ratea/2s. While our
Eq. ~3.3! is merely a generalization to finite correlation tim
of Eq. ~3.4! known in the literature earlier, we believe ou
results concerning the possible existence ofcosc and of spa-
tial oscillations, in particular Eqs.~3.5! and~3.6!, are entirely
new. They stem from the wave component of the teleg
pher’s equation manifested in the spatial oscillations of
wave-front shape.

Explicit solutions for the various cases in terms of t
parameters in Eq.~2.6! are best presented by appealing
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FIG. 2. The dependence of the respective
tios of cmin and cosc to the medium dictated
speedv on the damping-nonlinearity paramete
ratio a/2s. It is seen that the minimum speed d
creases monotonically. The oscillatory speed h
however, a characteristic value ofa/2s where it
diverges. Beyond that value, the oscillatory spe
is, in effect, infinite.
n
Fig. 3, which describes the positioning of the wave-fro
speed relative to the three characteristic values~in ascending
order! cmin , v, cosc. In region I,v.c.cmin , m is positive,
and we obtain from Eq.~2.8!

U~z!5H A1er 1z1A2er 2z, z>0

b2~b2a!eR1z, z<0,
~3.7!

where

A15
ar21~b2a!R1

r 22r 1
,

A25
ar11~b2a!R1

r 12r 2
.

In region II, cosc.c.v, m is negative, and

U~z!5H aer 1z, z>0

b2C1eR1z2C2eR2z, z<0,
~3.8!

where

C15
~b2a!R21ar1

R22R1
,

t
C25

~b2a!R11ar1

R12R2
.

In region III, c.cosc and R6 is complex, giving rise to
spatial oscillations on the left side. We expressR6 as R
6 i2p/l and obtain

U~z!5H aer 1z, z>0

b2
b2a

cosd
eRz cosS 2p

l
z2d D , z<0.

~3.9!

The wavelengthl and the phased are given by

l5
4p~c22v2!

A4~c22v2!k2
22a2c2

, ~3.10!

d52tan21S l

2p~b2a!
@ar11~b2a!R# D . ~3.11!

At the three boundaries of the regions,

U~z!5H aerz1„ar2~b2a!R1…zerz, z>0

b2~b2a!eR1z, z<0
~3.12!

whenc5cmin ;
her
se
FIG. 3. Regions of the wave-front speedc. The speed cannot be lower thancmin . Solutions have different shapes according to whet
c lies betweencmin and the medium dictated speedv, between the latter andcosc, larger thancosc, or on the boundaries separating the
regions. The explicit expressions are displayed in the text in reference to these regions.
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FIG. 4. Two examples of the wave-fron
shape:~a! without and ~b! with spatial oscilla-
tions. Values of the parameters are arbitrary:v
510, a55, s53, a51, b52 in both ~a! and
~b!; the speedc59 in ~a! andc518 in ~b!.
d
g

d-

-
a

if-
ally
U~z!5H ae2(k1
2/2G)z, z>0

b2~b2a!e(k2
2/2G)z, z<0

~3.13!

whenc5v; and

U~z!5H aer 1z, z>0

b2~b2a!eRz1@ar11~b2a!R#zeRz, z<0
~3.14!

whenc5cosc.
The above solutions, whose two typical shapes~with and

without spatial oscillations! are shown in Fig. 4, allow us to
examine analytically the relationship between the shape
the wave front and its dynamics, specifically the speed
pendence of the front steepness and of the front wavelen
Since the slopes are matched atz50, we may use either the
of
e-
th.

z>0 or z<0 expressions from the explicit solutions accor
ing to convenience. We see that the slope is given byar1

whenc.v and by2(b2a)R1 whenc,v. Using the defi-
nitions for r 1 in Eq. ~2.8! and forR1 in Eq. ~2.11!, we have

U8~0!5H 2~b2a!@2G1AG21mk2
2#/m, c,v

2ak1
2/2G, c5v

a@2G1AG22mk1
2#/m, c.v.

~3.15!

The slope-speed relation~3.15! that we obtain in the pres
ence of finite transport correlation times is found to have
considerably richer structure than what is known in the d
fusive extreme. In that extreme, the slope is a monotonic
decreasing function of the speed
-
s-

ain
FIG. 5. The variety of behavior of the slope
speed relationship in the presence of finite tran
port correlation times. The inset~with coordi-
nates on both axes identical to those on the m
figure! shows the diffusive limit which is well
known in the literature.
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FIG. 6. Different dependences of the slope
the speed according to the value of the parame
c* . See text for details.
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U8~0!52~b2a!
c

2D S 211A 4Dk

~b2a!c2D . ~3.16!

This simple behavior is seen in the inset in Fig. 5. F
finite a, however, the slope can display nonmonotonic
havior as seen in the main Fig. 5. There is a kink in
slope-speed plot atc5v. For the region in which the wave
front speed is larger than the medium-dictated speed,
slope decreases with increasing speed. At the point the
speeds equal each other, there is a discontinuity in the
vature. If the wave-front speed is smaller thanv, we find that
two subregions have to be considered according to whe
the inequality

a2~b2a!>2s2 ~3.17!

is, or is not, satisfied. If it is satisfied, the slope continues
increase. Otherwise, the graph appears similar to a para
whose minimum occurs when

c5c* [
Ab2a

2s
acosc. ~3.18!

Figure 6 clarifies the various shapes the slope-speed rela
can exhibit in different ranges of the parameterc* . In the
diffusive limit, the location of the minimum tends to infinit
on thec axis, with the result that two of the three regio
disappear:c is always smaller thanv ~which tends to infinity
in the diffusive limit!, and a monotonic decrease of the slo
r
-

e

he
o
r-

er

o
ola

on

is all that remains. The introduction of finite correlatio
times into the reaction diffusion problem, which is the pu
pose of the present study, is thus seen to uncover an u
pectedly large variety of behavior in the shape-speed dep
dence of the wave front. We present Fig. 7 to show how t
correlation time~equivalently its reciprocal, the damping pa
rametera) controls the slope.

In the case when spatial oscillations are present in
wave front, the dependence of the oscillation wavelength
the wave speed is given by Eq.~3.10!. We plot it in Fig 8.
We see that the behavior is not monotonic, there bein
minimum value of the wavelength given bylmin
58pav/(4k2

22a2).
The solutions given above deal exclusively with fron

that decay to zero at their leading edge. For the most p
these are the only fronts that exist, because solutions tha
not decay to zero asz→` tend to diverge. However, if we
have an oscillating solution, the divergence need not ne
sarily occur. We can then have nondecaying wave trains
extend to infinity in each direction. There is no unique so
tion associated with each speed, each solution has a diffe
slope atz50, and the previous discussions on the relat
between steepness and speed have no relevance to
wave-train class of solutions. Nevertheless, the speed d
determine the wavelengthsl. If the correlation time is infi-
nite, i.e., in the limita→0, we havecmin5cosc5v, and the
solution becomes a step functionU(z)5bQ(2z) when c
5v. When c.v, the solution is either a pulse or a wav
train. The pulse solution is symmetric about its maximu
and may be determined analytically,
he
t-
FIG. 7. The dependence of the slope of t
wave front on the transport correlation time. Plo
ted is uU8(0)u versusa for v510, s53, a51,
andb52.



e
e

PRE 61 4183NONLINEAR WAVES IN REACTION-DIFFUSION . . .
FIG. 8. Dependence of the wavelengthl on
the wave-front speed for pulse solutions for th
case in which spatial oscillations occur. Th
parameters arev510, a55, s53, a51, and
b52.
of
ase

is
o

a-
rize

tion

in
the
aly-
U~z!5H ae2m1z, z>0

b2
b2a

cosd
cosS 2p

l
z2d D , z1<z<0

aem(z2z1), z<z1
~3.19!

where

d52tan21SA a

b2aD , z152d, ~3.20!

and the wavelength of the oscillating term is given by

l5
1

2pk2
Ac22v2. ~3.21!
In contrast to Eq.~3.10! and Fig. 8, we see that in the case
these infinite wave trains, the wavelength does incre
monotonically with speed.

The pulse solution, and a wave-train solution which
determined numerically, are displayed in Fig. 9. The tw
have identical wavelengths in the oscillating regime.

IV. DISCUSSION

In this concluding section we discuss the original motiv
tion for the research reported in this paper and summa
our primary results.

Transport equations such as the telegrapher’s equa
with nonlinear additive terms as in Eq.~2.2! have appeared
recently @4# in our analysis of the distribution of stress
granular compacts. The memory, which is spatial in
granular context rather than temporal as in the present an
-
-
n.

rs.
FIG. 9. Wave-train solutions extending to in
finity in each direction found by numerically de
terming the coefficients of the general solutio
The parameters arev510, a50, s53, a51,
and b52. The inset~with coordinates on both
axes identical to those on the main figure! depicts
the wave-pulse solution for the same paramete
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sis, arises from characteristics of the granular material s
as grain size, grain shape, and friction. The nonlinear te
arise from the feedback provided by the dependence of
material density on the stress@8#. Our original motivation for
this work stemmed from the possibility that the combin
effect of the memory and nonlinearity on the stress distri
tion might be related to arches in granular compacts. T
coordinatet in the present analysis corresponds to the spa
coordinate in the vertical direction~the direction of gravity
and/or that of the applied pressure! in the granular compact
The quantityu here refers to the stress in the compact. T
specific form of the nonlinear terms derived in@4# is not that
of f (u) and does not appear to lead to the formation
nonlinear waves. However, it is known@9# that granular ma-
terial columns which are tall enough are self-supporting a
result of the friction along the sides of the container. T
observation leads on qualitative grounds to equations of
type analyzed in the present paper. Nevertheless, bec
important issues concerning the relevance of the analys
actual observations in granular materials remain to be c
fied, we postpone a detailed discussion in the granular c
text.

The point of departure of the present paper is Eq.~2.2!.
The primary results we have obtained are of two kinds. T
first group constitutes generalizations of results known e
lier for the diffusive extreme but now extended to cover
nite correlation times. The second group contains results
known earlier. To the first group belong the appearance
nonlinear wave fronts, the generalized form of the minimu
speed that the wave fronts take, particularly its depende
~3.3! on the nonlinearity parametersa ands as well as on the
correlation parametera, and the unexpectedly rich relation
ship ~3.15! of the speed of the wave front to its shape w
explicit dependence on the correlation time. To the sec
ut

e
,

r.
ch
s
e

-
e
al

e

f

a
s
e

use
to
i-
n-

e
r-

ot
of

ce

d

group belong the possible existence of a speed beyond w
spatial oscillations appear in the wave-front shape, the c
responding expression~3.5!, the condition~3.6!, the relation-
ship ~3.10! of the speed of the wave front to the waveleng
of the spatial oscillations, and the appearance and chara
istics of wave trains of infinite extension. Other interesti
features of the analysis include the emergence of the dam
harmonic oscillators with negative mass that facilitate an
derstanding of the results. Basic to the fact that our anal
is analytical is the approach@10# of the piecewise linear rep
resentation of the nonlinearity. We mention in passing th
so long as the memory function used in the analysis
Markoffian, i.e., has a finite value for its integral*0

`f(t),
there are no additional contributions to pattern formation
our analysis over earlier results@10# based on the diffusive
extreme. The generalization of the usual reaction-diffus
equation~1.4! to the form ~2.2! that we have used in the
present investigation is obviously not unique, our pres
choice having been dictated by analytic tractability.

In closing, we raise the following question. Is it perha
possible that when observations in systems are interprete
the basis of linear intuition to correspond to certain sig
speeds and conclusions are drawn on the basis of the o
vations about the medium speedv, gross overestimates o
underestimates might be occuring because the system is
linear, the signal speed beingc rather thanv? It is to be
noted that the nonlinear speedc can have an arbitrarily large
value dictated only by the wave-front shape.
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