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An exact evaluation of memory functions to describe dynamic localization and excitation transfer in a small
quantum system is provided to clarify the connection between two recently reported phenomena, one in quantum
optics and the other in condensed matter physics. The possibility of quantum control on the basis of the
calculation, with relevance to systems as widely different as electrons in a crystal, atoms interacting with
light, spins in crossed magnetic fields, and Bose condensates falling in a gravitation field, is briefly mentioned.
The connection to the interacting electron-phonon system and to nonlinear Schroedinger equations is pointed
out.

I. Introduction

Harvey Scher’s numerous contributions to transport theory
extend from fundamental solutions to puzzles in electron motion
in amorphous solids1 and the formalism of continuous time
random walks,2 to practical considerations of aquifers,3 material
failure,4 and random fracture networks in geology.5 I had the
good fortune of participating in many exciting discussions
initiated by Harvey at the University of Rochester and the Xerox
Research Labs in the early 70’s that led to the now famous
Scher-Montroll approach to anomalous transport in disordered
systems. This article is dedicated to Harvey on his sixtieth
birthday.

Given Harvey’s intense involvement with pausing time
distributions, which are known to be equivalent to memory
functions in generalized master equations,6,7 I thought it natural
to select for this article a new calculation of a memory function.
While simple in the extreme, the calculation addresses an issue
under substantial current focus in the overlap area of condensed
matter physics and quantum optics and appears to have relevance
to electron transport in solids,8-10 atom excitation under the
influence of light,11 spin evolution under orthogonal magnetic
fields,12 device design in Josephson junction arrays,13 and optical
lattices14 as well as Bose condensates.15 In a remarkable recent
experiment on optical lattices, Raizen and collaborators14 have
observed the phenomenon of dynamic localization in solids
predicted a decade ago8 by Dunlap in collaboration with the
present author. This clean verification has been especially
responsible for a resurgence of interest in this topic. The
following analysis begins with dynamic localization16 and
hopefully sheds some light on aspects of quantum control,17 a
subject attracting a lot of attention in various contexts.

Consider two simple unrelated systems: a two-level atom
subjected to optical excitation via an electromagnetic field and
an electron subjected in an infinite crystal to an electric field
with an oscillating time dependence. Figure 1 shows some
striking behavior exhibited by both of them if the time
dependence of the external field is sinusoidal. The probability
of excitation in the two-level atom depicted in Figure 1A is
transferred from one state to the other in spurts represented by
two stages, a quiescent plateau and a sudden transfer.11 The

effective bandwidth of the electron plotted in Figure 1B
decreases on the average but collapses (vanishes) repeatedly as
the ratio of the field magnitude to the field frequency is
increased, the characteristic values at which electron localization
sets in (vanishing of bandwidth) being proportional to roots of† Part of the special issue “Harvey Scher Festschrift”.

Figure 1. Two phenomena under discussion in the present paper. In
(A) we see quiescent plateaus and sudden transfer of excitation
probability under a sinusoidal driving field, as in ref 11. In (B) we see
a periodic collapse of the effective bandwidth of electrons moving in
a crystal under the action of a sinusoidal electric field as in ref 8. The
spurts in the transfer in (A) occur at time instants representing the zeros
of the applied field. The bandwidth collapse occurs at values of the
ratio of the field magnitude to the field frequency, which represent
zeros of the Bessel function of order zero. In terms of the system
quantities to be described below in section II, parameter values for
Figure 1A areV/ω andE/ω ) 250, and the abscissa isωt. In Figure
1B the abscissa is 2E/ω.
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the zeroth Bessel function.8 Common to these two phenomena,
which have been addressed in different communities, optics and
condensed matter, respectively, are the sinusoidal time depen-
dence of the applied field, periodic trapping, and the claimed
appearance of a Bessel function root condition.8,11 The kinship
of these two pheonomena was addressed in ref 18. Particularly
intriguing is the fact that, whereas Agarwal and Harshaward-
han11 appear to suggest that the process represented in Figure
1A was related to the Bessel root condition, Raghavan et al.18

found from their numerical work that it was not. To clarify this
statement, let us inspect Figure 2, which represents the process
of Figure 1A and demonstrates graphically that probability
transfer exhibits essentially identical behavior at the Bessel root
condition (for the same parameters as in 11) andfurthest away
from the Bessel root condition(when the relevant field ratio
equals a value almost precisely midway between two successive
zeros of the Bessel function).The point of Figure 2 is the almost
total lack of sensitivity of the structure in Figure 1A (which,
after the authors of ref 11, we will call the AH structure in the
rest of this paper) to the Bessel root condition. The connection
between the AH structure and the DK (dynamic localization)
structure predicted in ref 8 has remained unclear despite the
simplicity of the system, even after some of its aspects have
been understood through the numerical analysis in ref 18. Our
interest here lies in clarifying that connection and, additionally,
in answering why and when excitation transfer should exhibit
the clean separation into the plateau and sudden transfer
processes seen in Figure 1A. Although one knows that this is
surely related to level crossing, it is obvious that the separation
does not occur for arbitrary parameter values. Knowing what
parameter regimes make the separation possible is particularly
important if one is interested in quantum control. We will see
that the simple analysis presented below provides satisfactory
answers to these questions.

II. System and Essential Results

Let us consider a quantum particle that shuttles back and forth
between two states|1〉 and|2〉 via interstate matrix elementsV,
while the applied fieldE modifies in a determined fashion the

energies of the two states. This system describes the quantum
optics system of Figure 1A directly and the condensed matter
system of Figure 1B through the consideration of a very small
crystal (consisting of two sites only!). The evolution is described
by the Liouville-von Neumann equation

where the density matrixF and the HamiltonianH are given by

In general,V may be complex and time dependent but we will
consider it in this paper to be real and constant, in keeping with
most applications. We have also obtained results for the general
(time dependent and complex) case, which could be of interest
to special physical systems and will be discussed elsewhere.
Henceforth in this paperp is put equal to 1 for notational
convenience.

The main result obtained in the present paper, in terms of
which of the questions raised in the Introduction will be
discussed below, is an exact (analytic) derivation of an evolution
equation obeyed by the probability differencep(t) ) F11 - F22:

where the memory functionW(t,s) is known explicitly (and
simply) in terms of the driving fields:

This result involves no approximation. It applies whenever the
density matrix is initially diagonal in the representation of the
states|1〉 and|2〉, as would happen, for instance, if the system
were to occupy only one of the two states initially. For more
general initial conditions, a term is appended to the right-hand
side of (3), as will be shown at the end of the paper. We will
see that all questions of interest relating to Figure 1 are answered
transparently by a straightforward inspection of (3) and (4). The
derivation of (3) and (4) is given in the next section.

III. Exact Derivation of Memory

A convenient starting point for numerical (or analytical)
discussions of the evolution is

which is, of course, equivalent to (1). The elementsp, q, r of
the so-called “Bloch vector” are, respectively, the (real) density
matrix element combinationsF11 - F22, i(F12 - F21), andF12 +
F21. Let us use the symbolΛ for the nine-element square matrix
in (5). Our interest is in deriving a closed equation for the
probability differencep(t). It has been shown by Zwanzig and
by Nakajima19 that, if one defines a linear, time-independent,
idempotent projection operatorP, appliesP and 1- P in turn
to an evolution equation such as (1), solves the second equation
thus obtained formally for (1- P)F, and substitutes the solution
in the equation forPF, which we will call F′, one obtains

Figure 2. Probability of excitation of the two-state system as in Figure
1A showing lack of dependence of the AH structure on the Bessel root
condition. The solid line shows the evolution on resonance (when the
condition is satisfied, specifically when the field-frequency ratio equals
the tenth root of the Bessel function) as in Figure 2 of ref 11. The
dotted line shows the evolution off resonance (when the ratio is as far
as possible from the roots, i.e., lies midway between the tenth and
eleventh root). Very little change (and no qualitative difference) is
apparent. Coordinates are as in our Figure 1A.
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Despite its somewhat formidable appearance, this equation has
found many uses ranging from the elucidation of the problem
of irreversibility and the validity of Master equations, to the
calculation of resistivity and exciton transport parameters.
Depending on the context, the projection operator can involve
diagonalization, taking a partial trace, integrating over a set of
coordinates, and other varied operations.19,20Here let us choose
a particular realization ofP to single out the first of the
elements of the Bloch vector:

apply it to (5) instead of to the von Neumann eq 1 and use its
specific properties to obtain an exact result for our system. The
relation

shows that the first term in (6), viz.,P Λ(t) F′(t) vanishes
identically, that

and that (1- P )Λ(t′) applied to a vector of the form

once, produces a c-number times

and applied twice produces a c-number times

thus returning one to the original vector. As a result, the
exponential operator in the projection operator expressions in
(6) yields a cosine series and a sine series and allows an exact
analytic evaluation.21 Equation 6 yields

The right hand side vanishes for an initially diagonal density
matrix, and eq 3 follows. The memory function appearing in
(10) or (3) is not of the faltung type because the Hamiltonian
is time dependent and is given specifically by (4), or equivalently
by

It is unnecessary to specify the lower limit on the time
integrals: let us take it to be 0 in the sequel. These exact results
will be applied below to understand the structures of Figure 1
and to comment on the possibility of achieving quantum design
easily by specifying the driving field.

IV. Understanding the Structures in Figure 1

Let the time dependence of the externally applied field be
sinusoidal:

For convenience we will take the spatial distance between the
two sites to be 1 and thus refer to the energyE that equals its
product with the field magnitude as the field magnitude itself.
As in the case ofp ) 1, this allows us to simplify the notation.
Through Figures 4 and 5 of their numerical investigation,18

Raghavan et al. showed that, while dynamic localization is
sharply controlled by the Bessel root condition as analyzed by
(8), the occurrence of quiescent plateaus and sudden transfers
(i.e., the AH structure) is unaffected by changes in the ratio
2E/ω from on-resonance (Bessel roots) to off-resonance values.
As explained in the Introduction, Figure 2 of the present paper
also shows this insensitivity of the AH structure to the Bessel
root condition. Is there then no relation of AH to DK? And is
AH not sensitive to values ofE/ω at all? Answers to both these
questions are found immediately as follows.

For a sinusoidal field, the characteristic functionsφc(t) and
φs(t) in (11) are given by

If the parameter 2E/ω is large with respect to (w.r.t.) 1,φc(t)
andφs(t) oscillate rapidly. Because of these rapid oscillations,
one may consider takingp(s) out of the integral in (3) for short
times (short w.r.t. the period of the field but long w.r.t. the time
of oscillation of the memory). The approximation result, valid
for short times, is then

where the characteristic functionshc(t) andhs(t) are given by
the integrals

Equation 14 can be solved exactly and yields

This short time approximation is plotted in Figure 3 along with
the exact solution obtained numerically to a high degree of
accuracy from the original density matrix eq 5 for the parameters
of Figure 1A: V/ω ) 2, E/ω ) 250. The short time approxima-
tions (16) exhibits the spurts and the plateaus of the exact
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solution simply from corresponding characteristics of the
integralshc andhs, and agreement is excellent.

To obtain an indication of the solution for times long w.r.t.
the field period, one may replace the memory by its averageWh
over a period. While not accurate, this procedure does provide
insight into the behavior of the solution. Equation 3 reduces to

with the solution

In obtaining the second equality, use has been made of the fact
that the averages ofφc andφs areJ0(2E/ω) and 0, respectively,
which follows from the well-known expansion

The long time approximation18 follows the overall evolution,
neglecting the short time structure. Band collapse at the Bessel
root condition is recovered effortlessly since the effective
bandwidthVJ0(2E/ω) vanishes when the condition is satisfied.
The long time replacement of the memory by its average
invoked to pass from (3) to (17) neglects the accumulated effect
of short time transfer and leads to total band collapse, which is
actually not correct for the two-state system (but correct for
the infinite chain as in the analysis of (8)). However, the
approximate result gives an idea of the tendency of the evolution
and gives the correct qualitative description of bandwidth
collapse in theinfinite system.

Immediate analytic insight into the connection of AH and
DK structures can be obtained by an examination of the behavior
of the characteristic functionsφ andh. It suffices to look atφc

andhc as given by (13) and (15), respectively. Both functions
are plotted in Figure 4 along with the long time approximation
hc(t) ≈ tJ0(2E/ω). Parameter values in Figure 4 areE ) 250
andω ) 1, which satisfies 2E . ω . The functionφc(t) oscillates
most rapidly aroundωt ) nπ wheren ) 0, 1, 2, ... and least
rapidly aroundωt ) (2n + 1)(π/2) . Since sinωt behaves
linearly w.r.t.ωt around the former locations and quadratically

around the latter locations,φc(t) evolves with a characteristic
time that varies as 1/2E in the rapid regions to 1/xEω in the
slow regions. It is in the clearly discernible windows visible in
Figure 4 at the slow regions that the sudden transfer occurs.
The time scale separation is clean only when 2E . ω, as can
be seen easily by replotting Figure 4 for a value of 2E/ω, which
is not too large. No AH structure appears in such cases.

The function hc(t) oscillates rapidly elsewhere but itself
undergoes transfers in the slow windows, as seen in Figure 4.
Expansions of the cosine of the sine given above make this
clear. The long time expressionhc(t) ≈ tJ0(2E/ω), which
approximates so well the actualhc(t) in Figure 4, on the average,
corresponds, obviously, to the DK structure. We thus see at
once that the two questions posed in the Introduction are
answered as follows. While the AH structure (quiescent plateaus
and sudden spurts) has little to do with the Bessel root condition,
it does indeed bear a kinship to the DK structure in that the
two are manifestations of the evolution in extreme time limits.
Furthermore, both structures are controlled by the ratio 2E/ω.
The AH structure appears when the ratio is large, with
consequent time scale separation in theφ and h functions,
whereas the DK structure arises when the ratio equals Bessel
roots, with consequent collapse of the bandwidth. Incidentally,
for the AH structure to be visible, it is not merely sufficient for
2E and ω to be disparate in value. In the limit that 2E/ω is
small, the cosine of the cosine remains near the value 1 and
rapid oscillations over the time scale of the field period do not
occur: the time scales 1/2E and 1/xEω fall, in this case, well
outside the field period.

The memory functions of the problem, and consequently the
evolution of the probability difference, display four time
scales: the first is the period of the applied field (1/ω), the
second is controlled by the magnitude of the applied field (1/
2E), the third is essentially the geometrical mean of these two
(1/xEω), and the fourth is the bandwidth renormalized by the

Figure 3. Comparison of the exact solution for the probability
difference (obtained numerically) to the analytically obtained short time
approximation obtained trivially from the memory function in the
present paper. The analytic approximation (16) is seen to provide
excellent agreement with the exact solution. Parameter values cor-
respond to Figure 1A:V/ω ) 2 andE/ω ) 250.

Figure 4. Clear indication of the origin of the AH and DK structures
in terms of the memory functions. In the main figure we plotφc(t) )
cos[(E/ω) sin ωt], and in the inset we show its integralhc(t) from 0 to
t along with its long time approximationt timesJ0(E/ω). The parameter
value chosen isE/ω ) 20. Three time scales are discernible, their
reciprocals being the field frequencyω, the field magnitude 2E, and
their geometric meanxEω. Windows (slow oscillations) open up in
φc(t) at locations where the applied field is approximately linear int.
Transfer occurs in these windows, and the characteristic time scale is
the reciprocal ofxEω. Midway between these windows, where the
driving field is quadratic in t, φc(t) oscillates most rapidly, the
characteristic time scale being the reciprocal ofE. The integral ofφc(t)
shows the same behavior as the probability difference itself and, on
the average, follows a linear form with slope proportional toJ0(E/ω).
Bandwidth collapse in the infinite system corresponds to values of 2E/ω
that equal Bessel roots.

d2p(t)

dt2
+ 2Whp(t) ) 0 (17)

p(t) ) cos(x2Wht) ) cos[2VJ0(2E/ω)t] (18)

eizsinθ ) ∑
n)-∞

∞

Jn(z)e
inθ (19)
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Bessel function (VJ0(2E/ω)). Considering only the situationE
. xEω . ω . VJ0(2E/ω), for which the structures discussed
here are particularly visible, we see that internal oscillations in
the probability transfer occur on the first time scale, transfer
spurts occur on the second, repetition of the spurts occurs on
the third, and an overall transfer occurs on the fourth time scale.
There is a fifth, relatively unimportant, time scale, viz., 1/V,
over which the probability transfer occurs at very short times.

The availability of the analytic expressions (10) and (4)
suggests that quantum control could be achieved by designing
the time dependence of the appropriate driving fields. The
applied fields discussed above have been sinusoidal and,
therefore, characterized by a single time constant, the period.
Interesting features of the probability evolution emerge if the
applied field has multiple time constants. An examination of
Figure 1A shows that quantities characterizing excitation transfer
in the small quantum system can be looked upon as being the
extent of the transfer during the spurts, the length of the
quiescent plateau, and the amplitude of the oscillations within
the plateau. All these can be controlled more or less indepen-
dently by choosing an appropriate time dependence and strength
of the driving field. Because the extremely low temperatures
achieved in optical lattices and Bose condensates minimize the
effects of undesirable scattering, the motion of atoms in optical
lattices and, indeed, of entire condensates between traps can be
seriously regarded as realizations of the system analyzed here.
Manipulation of the electromagnetic fields forming the optical
lattice or the condensate traps in order to achieve almost any
desired time dependence of the driving fieldE(t) seems to be
practically possible.14 In addition to the optical lattice or optical
trap systems, magnetic macromolecules in giant-spin materials
could provide interesting examples of systems for quantum
control. As shown by Raghavan et al.,12 both the interstate
transfer matrix elementV and the state energyE turn out to be
time dependent and determined by applied magnetic fields in
mutually orthogonal directions. Considerable control is possible
through independent variation in the time dependence of the
applied fields, and roots of Bessel functions of orders other than
0 can be made, at will, to become significant in the evolution.
Control in electron transfer in solids, for which the DK
investigation was first undertaken,8 is more difficult (but by no
means impossible9) because of the effect of imperfections but
can indeed be attempted in superlattices which allow manipula-
tion of the effective lattice constand and, thus, of the ratioE/ω.
Device considerations introduced by Dunlap et al.13 would
additionally suggest examples of design in frequency-to-voltage
converters. The applied field can also be regarded to be
provided, at least in part, by the displacement of the lattice with
which the electron is interacting, although control of that part
would be relatively difficult. This is the subject of the next
section.

V. Relation to Electron-Phonon System and the Discrete
Nonlinear Schroedinger Equation

There are remarkable overlaps of the evolution of the dynamic
localization16 system studied here with interacting electron-
phonon systems and the discrete nonlinear Schroedinger equa-
tion (DNLSE). In the so-called nonlinear dimer described by
the DNLSE,22,23 the “externally applied field”E(t) is the
displacement of a harmonic oscillator interacting so strongly
with the two-state system that it is slaved by the evolution of
the two-state system. The fieldE(t) is then proportional to the
probability differencep(t) rather than externally determined. In
place of (12), one has

whereø measures the strength of the interaction (nonlinearity).
Despite the nonlinearity of the evolution matrixΛ

in the resulting form of (5), the memory function can be
determined and has the (nonlinear) form

The quantityQ(t) is defined22,24as the integral of the probability
difference:

The memory equation (3) then undergoes an interesting reduc-
tion to the physical pendulum equation obeyed byQ(t),

whose solution can be written exactly in terms of Jacobian
elliptic functions. Evolution ofp(t) exhibits self-trapping via
the cn-dn transition, as related elsewhere,22,23 and describes
polaronic transfer.

This nonlinear dimer involving polaronic transfer on the one
hand, and the dynamic localization dimer under sinusoidal
driving fields treated in the body of the present paper on the
other, can be viewed as extreme limits of a third system. The
latter is the simplest interacting electron-phonon system in the
approximation wherein phonons are treated classically but the
electron is treated quantum mechanically. Known as the
semiclassical dimer, this system evolves under the action of a
matrix Λ dependent onE(t) as in (5), rather than its nonlinear
counterpart (21) in whichp(t) appears explicitly, but withE(t)
given by

The limit in which E(t) is independent ofp(t) (which would
occur if ø were to vanish) describes the dynamic localization
problem. The limit in whichE(t) is slaved byp(t), i.e., the
situation in which the second time derivative in (25) can be
neglected as the result of a time disparity argument,22,23 leads
to the discrete nonlinear Schroedinger equation and the phe-
nomenon of self-trapping.

Refraining from making the classical approximation in the
description of the phonons leaves one with the (fully) quantum
dimer, known in some circles as the spin-boson system. Its
reduction to the semiclassical dimer or the nonlinear (DNLSE)
dimer has been the subject of much debate and investigation.
Recent work25,26has cast doubts27 on the validity of the DNLSE
description as well as the semiclassical description but has
shown28 that a certain memory function representation29 pro-
vides, in many relevant parameter ranges, an excellent descrip-
tion of the fully quantum dimer. That memory function
description involves a weak coupling approximation in the
transfer matrix elementV and is based on (3), but with a memory
of the convolution type:

E(t) ) øp(t) (20)

Λ ) (0 -2V 0
2V 0 -øp
0 øp 0 ) (21)

W (t,s) ) 2V2 cos[ø(∫0

t
dt′ p(t′))] ) 2V2 cosø[Q(t) - Q(s)]

(22)

Q(t) ) ∫t
dt′ p(t′) (23)

d2Q(t)

dt2
+ (4V2

ø ) sin øQ(t) ) 0 (24)

d2E(t)

dt2
+ ω2E(t) ) ω2øp(t) (25)
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Here,g is the dimensionless coupling constant that describes
the electron-phonon interaction,g2ω being a measure of the
polaronic depression of the energy. It is quite remarkable that,
as in the dynamic localization problem, this approximated
memory function in the fully quantum problem is characterized
by four time constants, whose reciprocals, for large coupling
(g > 1), are the phonon frequencyω, the productgω, the
polaronic depressiong2ω , and the tunneling frequencyV exp-
(-g2). The correspondence of the first three with the three
respective quantitiesω, xEω, and 2E in the dynamic local-
ization problem is complete if one makes the identificationg2

f E/ω . The suppression factor for the bandwidth in each case
is a function of the corresponding quantitiesg2 and 2E/ω. The
function is an exponential in the former and a Bessel function
in the latter case. Theshapeof the spin-boson memory is,
however, different from the dynamic localization memory. The
exponential factor produces decays and the memory is charac-
terized by periodic occurrences of what has been called “silent
runs”.

There exists yet another physical system that unifies the
dynamic localization system and the nonlinear dimer in a manner
different from the semiclassical or the full quantum dimer.The
evolution equation is

where the fieldE is given by (12). It represents a system in
which the strong electron-phonon interaction and the slaving
assumption have already produced a nonlinear dimer to which
an independent sinusoidal field is applied externally. Its study
constitutes the generalization to the nonlinear domain of the
DK analysis and has been carried out by Bishop and collabora-
tors10 numerically for arbitrarily large systems. Questions have
been sometimes raised as to why the numerical investigation
of this system shows the Bessel root condition to continue to
apply unmodified in spite of the nonlinearity. In the case of the
dimer this can be understood simply in terms of the present
calculation. The exact memory function resulting from (27) is

The cosine may be expanded and for times long with respect
to the period of the driving fieldE, the characteristic functions
φ may be replaced by their averages over a period as in the
long time analysis of the linear dynamic localization system
presented in the earlier section. Instead of (24) or (17) one now
gets

which shows that bandwidth collapse is governed by the Bessel
root condition despite the nonlinearity. This is in keeping with
the results reported by Bishop and collaborators.10 It is also
simple to analyze28 for short times and conclude that the AH
structure is largely unaffected.

VI. Remarks

The contribution of the present analysis to the understanding
of the interesting structures exhibited in small quantum systems

under driving fields typified in Figure 1 is based on the exact
derivation of a useful evolution equation, viz., (3). The
advantage of the explanations presented lies in their being based
on simple features of analytically known memory functions,
such as the characteristic windows that open up inφc(t) and
φs(t) for large values ofE/ω. The variety of connections
mentioned between the system considered and the DNLSE, with
or without external driving fields, and the spin-boson system,
with or without the semiclassical approximation, are also
interesting. It is hoped that the simple analysis of this paper
will be particularly worthwhile in quantum design.

It might be useful to mention in passing that, instead of the
integrodifferential equation that has been derived here for the
probability difference, one can also derive a second-order
differential equation with time dependent coefficients for the
complex amplitude at each of the two states and analyze that
equation through exact reductions to integral form or ap-
proximately via WKB methods in appropriate time and param-
eter regimes. The advantage of the equation forp provided here
is that it allows a direct description of the most physical of the
system quantities. The full generalization of (3) for arbitrary
initial conditionsp(0), q(0), r(0), and for time dependentV is

where the memory functionW (t,s) is

and the effect of the off-diagonal nature of the initial density
matrix appears to arise from the initial values ofq(0), r(0), and
the explicit driving terms on the right hand side

Closed equations forq(t) and r(t) can also be written through
slight modifications of the projection operators.
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