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A theoretical approach to the descriptioh of stress distribution in granular compacts is presented
on the basis of 2 memory function formalism. Experiments which have motivated the approach
are mentioned. The formalism is shown to provide an explanation of observed features of stress
distribution in compacts, and to lead to existing theories in extreme limits, thereby providing a
unification of the theories. The memory functions are shown to be intimately related to characteristic
spatial correlations in the granular system and are discussed on the basis of stochastic considerations.

- I. INTRODUCTION: EXPERIMENTAL MOTIVATION AND THE MEMORY APPROACH

Major areas of current research in granular materials include avalanches, patterns in flow, segregation, sound
propagation, and spatial distribution of stress [1-6]. This article deals with the last of these. The study of stress
distribiition i static piles of granular material is characterized by undisputable importance from the applications
point of view, enormous difficulty in the clear construction of theories as well as in experimental measurement of
relevant observables, and, currently, by an unfortunate absence of communication between various groups working
in the field. The importance of the field stems, e.g., from the requirement of understanding and control of stress
distribution in pre-sintering compacts in almost any manufacturing situation. The difficulty in theory arises from the

" complexity of the system, involving as it does, friction, as well differing shapes and sizes of the granular particles:

for instance, almost nothing is known definitively about the so-called constitutive relations among the stresses. The
difficulty in experiment lies in the design of direct probes of stress in the bulk of the granular material: it is relatively
easy to measure stress at the surfaces of a compact but values of stress in the interior must be often deduced from
density distributions or other indirect observations!.

The focus of the present article is a method we have developed recently [8-10] for the theoretical description of
stress distribution on the basis of what is called a memory formalism. The original motivation for the investigation
was provided by reported observations of curious features such as spatial oscillations in stress down the center line in
compacts. ‘These features are apparent in recent experimental results [11] as well as in data that have been available in
the literature for many years {12-13]. Experimental information about the distribution of stress in a powder compact
has been difficult to obtain unambiguously. Observations have employed, in some cases, direct measurement of the
stress with the use of sensors or strain gauges [14,20] within, or at the edge of, a compact to measure the forces
that evolve during pressing. Qther cases have involved indirect deduction of the stress distribution from the density
distribution within the compact. The first approach suffers from a lack of accuracy and the second from the need for

.specific assumptions of a local stress-density relation at every point in the compact [16-19]. Nevertheless, it is quite

clear that characteristic unexplained features such as the non-monotonic variation of the stress with depth along the
centerline of the compact emerge regularly (but not universally), and that a theoretical description of these features
is not trivial. Indeed, Aydin et al. [11] have referred to the failure of existing theories to account for the oscillatory
behavior. The reader is referred to ref. [9] for a detailed description of the experimental background.

The method of approach we have developed [8-10] is based on two ingredients: (i) the ¢ — z transformation which
singles out one spatial direction in the granular material and treats it for the purpose of description as if it were time,
and (ii) a spatially non-local formalism which employs integrodifferential equations of the Volterra type incorporating

‘memory functions which characterize spatial correlations in the gramular material. The { — z transformation has

appeared in investigations earlier than ours, notably in the work of Bouchaud, Cates and collaborators [7]. The
transformation simplifies the mathematical treatment considerably, provides physical intuition based on knowledge

“of initial value problems in other fields, but, as a result of accompanying approximation procedures, forces certain

limitations on the applicability of the entire formalism. The memory. formalism [8-10] has a great deal of analytic
power, particularly for the unification of disparate approaches and for the description of intermediate cases, and was
supgested by work in the rather digtant area of exciton transport in molecular aggregates [21]. It can be viewed as

!The third current characteristic, the absence of commmunication between different sets of workers, is difficult to account for,
but could be arising from the fact that the background of the investigators is rather varied, ranging from engineering through
physics to applied mathematics.



arising from a mathematical generalization of constitutive relations such as those employed in ref( {71) but, as will
be remarked below, is best looked upon as arising from the stochastic properties (spatial correlations) of the granular

system.
The first step in our description is, thus, the choice of the z direction as the direction of gravity and/or of the

applied stress, along with an attempt to write a closed evolution equation for the scalar field ¢, which represents the
zz-component of the stress tensor. The second step, and indeed the characteristic ingredient of our approach, is the
use of an ‘evolution equation’ which is non-local in 2 :
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The bridge function ¢ which connects the derivatives of the stress at various depths z is the memory function, and
is a measure of important spatial correlations of the granular material which arise from the granularity (variations in
shape and size of the grains) and other properties such as friction. Those properties also determine the value of D.
For the sake of simplicity we ‘will refrain from discussing in this paper starting points more general than (1} in which
the depth coordinate and the other spatial coordinates are intermingled in the memory description.

The three succeeding sections of this article deal, respectively, with how an equation such as (1) helps in the
umnification of diverse existing approaches to stress distribution, how they lead to the understanding of observed
features such as spatial oscillations of the stress in compacts, and how the memory functions are related to properties

of the compact.

II. HOW MEMORIES HELP I: UNIFICATION OF EXISTING APPROACHES

Three particulsr cases of (1) deserve mention. In the first, we take the memory function to be independent of z:
#(2) = 2/D. Equation (1) reduces, then, to the wave equation
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and thus to the starting point of the analysis of Bouchaud et al. [7}. The parameter ¢ denotes what may be termed
the wave speed, which is directly related to the slope of the so-called light cones. This perfect memory situation
represents the fact that the stress applied on one particle is transmitted along the lines of contact between particles
and there is no loss of information about the original strength and direction of the applied force.

In the second case, we take the memory function to be decaying so rapidly with depth that it may be replaced by
a §-function: ¢{z) = 6(2) Equation (1) yields the diffusion equation
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It is possible to show in detail, as we have done elsewhere [8] that the above equation is identical to a simplified
version ? of the starting point of the analysis of Liu et al. [23].

-The diffusive limit of the evolution has been used in the past for developing mean field treatments [23]} and a.ddressmg
the magnitude distribution of the stresses rather than their spatial variation. The wave limit has been discussed
primarily via ray tracing arguments [7] in what may be termed the geometrical limit of the wave equation. Our own
approach has been quite different. We have obtained actual solutions of these equations for the propagators (Greens
functions) through explicit initial value and boundary value treatments and, with their help, attempted to address the
spatial distribution of stress in granular systems. Qur especial emphasis has been to present an intermediate starting
point which combines the physics inherent in the extreme Hmits of wave-like and diffusive behavior and is capable of
describing the entire range in between. Therefore, we focus attention on memory functions which are neither constant
nor have infinitely fast decay. A simple intermediate situation is the exponential ¢(z) = aexp(—az). In the respective
limits of small and large ¢ (the latter limit being actually @ — 0o, ¢ — o0, ¢?/a = const.), the wave and the diffusive
case emerge trivially. The intermediate case gives the telegraphers equation

2The simplification consists in assuming a lack of dependence of I? on z as well as on x,y.
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with D = ¢?/a.

Whereas the wave limit of Bouchaud et al. [7} corresponds to identical, frictionless spherical particles arrayed in a
perfectly ordered lattice, the intermediate situation above describes a more realistic granular system in which random~
shaped particles of random sizes are packed in a random arrangement. For the sake of simplicity, we will consider
here only a two-dimensional system and thus use, instead of (4}, the eguation
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The easy unification of the extreme limits provided by our memory approach may be appreciated either directly as
explained above or through explicit solutions such as those of (5). Take the applied stress 0., (z,0) at the ‘surface’
z =0 to be a delta function §{z). The solution of (5) is then given by
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where the term 1" vanishes idénticélly for cz < z, and equals, for cz > =,
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the I’s being modified Bessel functions. In the limit o = 0,
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as in ref. [7] and we immediately recover the pheonomenon of ‘light cones’. Qur solution shows that, in addition, there
is a nonvanishing stress distribution within the light cones. This stress is given by our texm 7'. In the limit which
reduces our theory to the opposite extreme of Liu et al. [23], the light cones spread out to coincide with the surface
Z i{), and the entire region experiences stress: : -
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It is also possible to analyze with the help of these solutions the well-known ‘burial problem’, i.e., the question
of where one should bury oneself under a sandpile to minimize the stress. One way of addressing the problem is to
consider, via the ¢ — z transformation, stresses arising from gravity forces to be applied to circular regions of radii
increasing continuously from zero to a maximum at different times (depths), and to sum all the contributions, taking
boundary contributions to be relatively negligible. The key quantity to analyze is, thus,

Q)= [ don [ darpte,znzm) | W)

where v is the propagator {Greens function) and v describes the slope of the sandpile. The propagator is easily
obtained from the memory functions, an explicit example being (6). The vanishing of &éﬁ'ﬂ at a given value of the
depth z locates the extremum and the sign of the second derivative identifies the extremum as minimum or maximum.
Unlike simple ray tracing arguments, which cannot address the fact that stress extrema appear under the apex in
some sandpiles but not in others, the present memory analysis has the potential to show how factors such as the
extent of coherence (the value of ¢/c in our telegraphers equation above) influence the extrermurm.

1II. HOW MEMORIES HELP II: EIGENVALUE PROBLEM FOR COMPACTION IN DIES

‘We now return to the primary problem which motivated the memory approach: spaftial oscillations of stress in

‘compacts. The memory approach addresses this issue by developing an eigenvalue analysis of (1) in the compact.

Details of the theory may be found in {8] and epplications to experiment in [9]. Under the assumption that the extent
in the z-direction is large, (5) can be solved through the application of the method of separation of variables:
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First, let us take the stress to be vanishing on the boundaries of the die which we assume to extend from z = —L/2

to z = L /2. This is an artificial boundary condition which we consider only for illustrative purposes [8]. If a constant
punch pressure pp is applied across the top surface of the compact, the center line stress can be evaluated exactly in
the Laplace domain as

55 (0€) /oy = % [1 — sech (%M)] | (13)

where tildes denote the Laplace transform, and ¢ is the Laplace variable. In the wave limit o = 0, the inversion is
easy and gives the center line stress as 4 square wave W (z) along the z coordinate. It is constant at the applied
value pp for 0 < z < I./2¢, flips to —pp for L/2¢ < z < 3L/2¢, flips back to pg for 3L/2¢ < 2 < 5L/2¢, and continues
alternating in this fashion. In the diffusive limit, the center line stress distribution is given by ,
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where 6, is the elliptic theta-function of the first kind. The general expression for the intermediate region is
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where I is the modified Bessel function and M (2}, the derivative d—ﬁlﬁﬂ of the square wave W (2} described above,
can be expressed as an infinite sum of § functions centered at multiples of L/2c.

This illustrative analysis shows oscillations in the center line stress but contains unphysical elements which arise
from the vanishing boundary . conditions at the die walls because of the wave element in the evolution. Realistic
considerations involve a decrease of the stress at the pipe walls with increasing depth, and have been treated in [9].
In that treatment, o,,(::L/2, ) is not taken to vanish, but rather to be a given function A(z) of the depth:
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where py is the average value of the applied stress at the top surface. The function h{z) is taken directly from
experiment. The solution of (5) with such initial and boundary conditions presents an unusual boundary value
problem which is analogous to propagation problems in which the boundary condition is dependent on time [24]. We
have provided a complete solution in ref. [9] which may be summarized as follows.

In a manner analogous to that used in the treatment of Thompson [17], the applied stress at z = 0 is taken to have
a parabolic dependence,

22
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with co =¢(0,0)/py to ensure that the integrated applied pressure is equal to pg. A typical set of obseriratiqnsz taken
from Duwez and Zwell [20].is found to be compatible with
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the expression for the stress extended to realistic initial and boundary conditions is found to be
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Thus, with given distributions of stress along the top surface and the side walls, explicit solutions are found for the
stress in the interior and compared successfully to experiment. Oscillations down the center line emerge naturally
but not always, the factor governing their appearance being the ratio c/a. Closed contours signifying true wavelike
behavior appear in some cases but not in others, also depending on the value of ¢/c. Practical matters such as the
effect of lubrication of the walls and of changing the profile of the applied stress at the top of the conpact can be
addressed [9]. ' . ' '

Careful analysis of the question of whether the diffusive limit alone would suffice to describe the observed stress
distribution results in an unequivocal answer in the' context of the experiments reported in refs. [11,14,15]. The wave
ingredient of theé telegrapher’s equation is found to be essential to explain some of the data (as in uranium dioxide)
where oscillations are clearly visible. Furthermore, even for cases which exhibit no such oscillations (as in magnesium
carbonate and alumina), a careful analysis based on our predictions lead to the conclusion that the diffusive limit is
inadequate for the experiments of refs. {11,14,15]. ' T

IV. WHERE DO THE MEMORIES ORIGINATE 7 — STOCHASTIC CONSIDERATIONS -

Having understood how memories help in understanding experiment and in unifying diverse approaches to the
calculation of stress distributions, it is necessary to understand how the memories arise. One way is to obtain
them phenomenologically through more or less suggestive arguments involving generalizations of previous constitutive
relations. Such arguments have been provided in ref. [8] but give only 2 mathematical justification with little physical
content. To understand the physical origin of the memories, consider (for simplicity) a two-dimensional granular
compact(z along the vertical and z along the horizontal} consisting of weightless circular discs of a given radius
arranged in perfect order. Let a vertical force be applied to the top of one of the discs lying on the top layer of
the compact. It is trivial to show, on the basis of Newtonian laws of statics, that the consequent force distribution,
equivalently stress distribution, is down two lines in the compact, representative of what has been called {7,8] light
cones. Viewed through the ¢ — z transformation, the representative point in the one-dimensional space of ¢ travels
ballistically with constant speed which we will call c. Consider next a more realistic situation. The array is now not
perfectly periodic, there being irregillarities stemming from changes in shape and size of the discs and/or presence of
friction. The speed ¢ will change from location to location, and the path of the representative point will be jagged:
the speed ¢ will become a stochastic variable. Restricting attention to its z-variation only, we write

dr -
o e(z), (22)
with c(z) a given stochastic process. Defining a Liouville density for the process and averaging over all realizations
of the stochastic process, it is possible to obtain [25] a variety of evolution equations for the averaged probability
density P(z, ) according to the particular stochastic characteristics of the process ¢(z), In other words, the particular
irregularities arising from the shape and size changes in the discs, or from their roughness, are reflected in ¢(z) and
thereby in the evolution of P(z, z). The latter quantity, involving as it does an average over various realizations (the
jagged paths) of the stochastic process, can be shown to correspohd to the probable value of the stress, equivalently
to the probability density of the stochastic process. _

One simple example of the stochastic process is one in which c(z) is stationary and Gaussian, with zero mean and

a correlation function A :

(e(2)elz1)} = Az — 21). | o (23)



It leads straightforwardly {25] to
7] 62
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where the depth-dependent diffusion constant D{z) is given as
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0

We observe that the depth-dependence of D(z) arises from a direct integration of the correlation function A(z). If the
correlation function decays extremely rapidly signifying that the stochastic process corresponds to a perfect random
walk, the stress evolution equation is a simple diffusion equation as in (3). Our analysis thus provides an explicit
derivation from stochastic considerations of the full {not simplified to a constant D) equation of Lin et al. [23}, and
clarifies the validity of that equation. '

On the other hand, if the stochastic process is a random telegraph, with an exponentla.l correlatlon, it is also
possible [25] to show that to & good approximation, the stress evolution equa’s:on is the telegrapher’s equation (4).
Generally, the complex1t1es and irregularities of the grain-grain interactions in the compact will influence the details
of the stochastic process and thereby the memory function. Computer simulations have been begun to obtam ‘the
spatial correlations inherent in ¢{z) and thence the memory functions. Such simulations, along with attempts to
measure the correlations expenmentally through scattering experiments, give an o priori predictive character to
the theory of stress distribution that we have developed. The memory functions are seen, in this manner, to be
not merely a phenomenclogical comstruct but calculable in principle from microscopic considerations rega.rdmg the
physical characteristics of the granular system.

There is yet another source of memory functions which has been described in ref. [10] in greater detail than possible
here (because of space restrictions). It arises from an effective medium theory of the granularity of the material. The
granularity demands that one replace = by a discrete index m and the randomness of shapes and sizes of the particles
demands that the rates in the evolution equation be random functions. Even if we start from a diffusive (but discrete)
extreme represented, e.g., by

dPm (2)
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where P deunotes the z-component of the stress, and m is the discrete index representing the horizontal = (or y)
coordinate, the randomness of the rates leads to a memory function that arises from disorder: :
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Here F (z). is obtained through a mean field argument from the random distribution p(F) of the rates. Equation
(27) is evidently equivalent to (3} in the continuum limit, F (z) being proportional to D¢ (z) . The memory functions
which arise from such effective medium considerations are characterized by a sum of two parts with differing decay
constants, and to stress distributions different from those predicted by a diffusion or telegrapher’s equation {10}.

V. CONCLUSIONS

The formalism of memory functions for the description of stress distribution described in the present paper has
achieved unification of diverse approaches such as those applicable in the extreme diffusive and wave limits, treatment
of the entire range in betwéen, and explanation of observed features such as oscillations in stress distribution. The
memory function may be computed from given stochastic properties of the granular system arising from the varying
shapes and sizes of the grains and from the grain-grain interaction. Information about these stochastic ‘properties
themselves may be obtained in principle from a combination of scattering experiments and computef simulations.
The memory formalism has also been extended [26] to include nonlmeanmes of the kind relevant to rea.ctlon diffusion
systems. '

Among shortcomings of this approach in its present stage are the assumption that the present does not influence
the past (in the sense of the ¢ — z transformation ) which means that stresses at smaller depths are considered as
not influenced by stresses at larger ones. This assumption is not always valid as the stochastic paths representing
the variable ¢(z) can in some cases turn upwards in a granular system. Indeed, stress distribution cannot be looked



upon universally as an initial value problem. This is a difficulty shared by the extreme approaches of Liu et al. [23]
and of Bouchaud and Cates [7] as well as by our intermediate formalism. Related to this problem is the evident
restriction that the stress analysis presented above for dies be used only in long pipes or media without a bottom.
Termination in the z direction as in a compact introduces ‘boundary conditions in time’ which appear difficult to
treat from evolution equations.. In the true time evolution situation, we predict behavior at a later time, given spatial
boundary conditions for all time and an initial condition. The incorporation of a ‘“final’ condition, ie., a boundary
condition at large values of time seems difficult to implement. Another notable absence from the formalism is the
inclusion of features peculiar to the gramular system such ag isosteticity [27]. This last is a very important matter
which, it is hoped, will be incorporated in the analysis at a future time. Indeed, at the present stage, our formalism
is too simplistic to address severe complexities peculiar to granular matter such as the dependence of stresses on the
history of how the granular system is constructed }3,28,29].
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