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Applicability of the Fisher equation to bacterial population dynamics
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The applicability of the Fisher equation, which combines diffusion with logistic nonlinearity, to population
dynamics of bacterial colonies is studied with the help of explicit analytic solutions for the spatial distribution
of a stationary bacterial population under a static mask. The mask protects bacteria from ultraviolet light. The
solution, which is in terms of Jacobian elliptic functions, is used to provide a practical prescription to extract
Fisher equation parameters from observations and to decide on the validity of the Fisher equation.
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[. INTRODUCTION dynamics, we have developed a theoretical approach that
generally retains the full nonlinearity of that competition
Bacterial colonies form a subject of obvious medical im-term. In the present paper, which is the first of a series built
portance and have been studied recefitly5] experimen- on this approach of maintaining the nonlinearity in the equa-
tally as well as theoretically. Some theoretical descriptions ofion, we focus our attention on the effect of a mask on the
their dynamics have avoided phenomena such as mutaticspatial distribution of thestationarypopulation of the bacte-
and have focused on growth, competition for resources, anda.
diffusion. In terms of the respective parametarggrowth Consider, as in the moving mask experimer#s an ef-
rate), b (competition parametgr and D (diffusion coeffi-  fectively linear Petri dish in which a mask shades bacteria
ciend, the basic equation governing the spatiotemporal dyfrom harmful ultraviolet light that kills them in regions out-
namics of the bacterial populatiar(x,t) at a positionx and  side the mask but allows them to grow in regions under the
time t has been taken to be the Fisher equafi®h mask. Unlike in the moving mask experiments, however,
consider that the mask does not move but is left stationary.
2 Interest is in thex-dependence of the stationary population of
Ju(x,t) au(x,t) . . ) : ! X
=D +au(x,t)—bu?(x,t). (1) the bacteria. As in previous consideratidd3, we will as-
ot ax? sume that the growth rate has a positive constant value
inside the mask, and a negative value outside the mask.
For simplicity, we consider throughout this paper only the If we take the value of outside the mask to be negative
one-dimensional situation, which is appropriate to some exi.nﬁnite to reflect eXtremely harsh ConditiO(lee to ultravio-
periments that have been carried out recently with movindet light) when the bacteria are not shaded from the light, we
masks[3]. In contrast to earlier experiments done in con-can take the population at the mask edges and outside to be
stantly homogenized media, where methods such as thod@entically zero. We will putdu(x,t)/dt=0 in Eg. (1) to
based on turbidity are used to measure bacterial concentrgeflect stationarity, introduce a scaled position variable
tions, the newer mask experiments address the interplay ofx/+/D for simplicity, and begin our analysis with the ordi-
bacterial diffusion and nonlinearities in their dynamics. Irra-nary differential equation for the stationary populatiofz):
diation with ultraviolet light presents highly unfavorable
conditions to the bacteria except under a moving mask that d?u(¢)
shades those bacteria that are underneath it in the Petri dish. de?
Motion of the mask at specified velocities introduces an ef-
fectively convective element in the bacterial dynamics. Ob-Our interest is in the regions in the interior of the mask of
servations in such experiments have been reported about eyidth 2w, i.e., for —w=<x<w, the boundary conditions be-
tinction transitions suggested earlier in theoreticaling y(+w/\D)=0.
calculationg 4] and in numerical simulatior{$]. Those the- The purpose of our investigation is to give a practical
oretical calculations have focused on systems in which th@rescription to decide on the applicability of the Fisher equa-
growth ratea varies from location to location in a disordered tjon to specific scenarios such as in the planktonic stage in

manner, and have employed techniques based on linearizgacterial dynamics, and to extract parame®rsa, b from
tion of the Fisher equation. The first feature has allowed th%bservations if the equation is found to be app"cab|e_

analysis to use concepts from Anderson localizafiéh a
phenomenon well known in solid state physics of quantum
mechanical systems. The second feature has relegated the
nonlinearity character of Fisher’'s equation to a secondary
role. Because we suspect nonlinear features represented by The solutions to Eq(2) can be written in terms of Jaco-
—bu? in Eq. (1) to be of central importance to bacterial bian elliptic functions as follows. It is knowf8] that the

+au(§)—bu?(§)=0. %)

II. ELLIPTIC SOLUTIONS IN THE INTERIOR AND
EXTRACTION OF FISHER PARAMETERS
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square of any of crk), sn(,k), or dn(,k) satisfies an
equation resembling E@2). Here, we use the notation that
is the elliptic paramet€9] rather than the elliptic modulus,

which is the square ok. Thus, y=sr?(¢,k) is known to
satisfy
d?y

d—§2+4(1+ k?)y—6k?y?=2, ©)

Comparison of Eq(3) with Eq. (2) shows that the signs of

the linear and quadratic coefficients are the same in the tw
equations but Eq.3) has an extra constant term on the right
hand side. This difference, as well as the fact that the bact
rial system has more independent parameters than the sin

k that appears in Eq3), suggests that we augmenfenk)

by phase and amplitude parameters, i.e., take as the soluti

of Eq. (2) within the mask
ui(§)=asm(Bé+ k) +y, 4

and obtain quantities, 8,4,y by differentiating Eq.(4) or

by other means. Suffikrepresents the interior of the mask.
Symmetry considerations, specifically the requirement th

the maximum ofu; (&) be até=0, lead to an evaluation af
as half the period of €n A shift identity allows rewriting of
Eqg. (4) as

ui(&)=a cd(BEK) +y, (5

the cd function8] being simply the ratio cn/sn.
On differentiating Eq.(5) twice with respect t, using

the relationships among the elliptic functions, and substitut-

ing in Eq.(2), we find
48%(k*+1)—a+2by=0,
6k?B%2—ba=0,

2aB%(1—k?) + y(a— yb)=0.
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explicitly in terms of the Fisher parameteasb and three
functions ofk alone:

f(K)=(3/2)k?(k'2+k*) ~12,
fg(k)=(1/2)(k'2+k*) 14,
f(K)=(1/2)[1— (K*+1)(k'2+k*) ~ ). 8

Herek'2=1—k>2.

Equation(7) provides us with the means to meet the pri-
Rwary goal of this investigation. The practical prescription we
seek for investigating the applicability of the Fisher equation
yegins with fitting Eq(7) to the observed stationary profile.

eIeast-squares procedure yields,k. For sensitivity pur-
$oses we use the nome=exp(—=#K'/K) for fitting [10]
Hther thark. The relation

_E _i L ’ /
Un=p Lok + (K ]= 2b[k2 k'2+(k'2+kH Y

X(k/2+ k4)—1/2 (9)

aBetween the maximum value of the bacterial populatign

and the extracted parameters provides a check on the proce-
dure. The determination of the diffusion const@nfollows

the determination ok. For this we can use the boundary
condition mentioned above, tha{¢) vanishes at the edges

of the mask:¢=+w/\/D. Equation(7) leads then to an im-
plicit expression that yields the diffusion constant

cr?((a/d)(1—k2+k* ~Yaw/ D k)

CHK+D - (1-K*+KH YA (1-K)]
K2k (1-KE+ k)

(10

Our prescription for the extraction of Fisher paramei2ys,

b is, thus, complete provided we can assume the conditions
outside the mask to be harsh enough toyat the edges to
vanish. This assumption can be tested from the observations.

Solution to this algebraic system leads to the result that The question of the very applicability of the Fisher equation
and y are proportional to each other through a factor that isto the bacterial system can be addressed by the quality of the

a function only of the elliptic parameter,

—(K?>+ 1)+ J1-k°+k*
3k? '

YT a

We also find explicit connections between quantitiesd
and two of the Fisher parameters of the bacterial systdm

3a
_ 204 1,21 1,4 112
a—<2b)k(1 ke+k*) ~ Y4

a
B2=<Z)(1—k2+k4)‘1’2. (6)
This allows us to write the stationary solution as

ui(§)=(a/b)[f (ke (Vats(k &k +f (K] ()

fits of solution to the data. Fits of poor quality would neces-
sitate a rethinking of the quadratic nonlinearities assumed in
the equation, indeed of the entire form of the equation.

We illustrate our practical prescription in Fig. 1. We have
considered two hypothetical cases of the observed stationary
profile of the bacterial population. One pertains to a situation
in which the Fisher equation is applicadleig. 1(a)]; the
other in which it is nofFig. 1(b)]. The “data” correspond,
respectively, to stationary solutions of E@) and to the
so-called Nagumo equatidil]

u J9°u

E:DEHu—C)(Au—BuZ), (1

noise having been added in each case to simulate experi-
ments. The amount of noise introduced is of the order of
what we have observed in the recent mask experiments.
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FIG. 2. Procedure to extract from the experiment the type of
nonlinearity in bacterial dynamics. The numerically obtained sec-
ond derivative ofu is plotted againsti in the two case$a) and (b)

FIG. 1. Procedure to determine the applicability of the FisherOf Fig- 1.
equation and/or to extract parameters from the observations. Shown
is a least-squares fitting of the analytic solution, Ef), of the  the data in Fig. th) immediately points out the incompatibil-

Fisher equation, to numerically generated data by adding noise tity with the Fisher equation and suggests a Nagumo-like al-
theoretical predictions in two cases. (@ the Fisher equation can ternative.
be considered applicable while {b) it cannot.

x (cm)

The numerically generated data are plotted as circles IIl. DEPENDENCE ON MASK SIZE
while the full line curve shows the best fit. We see that in ) ) )
Fig. 1(a) the Fisher solution matches well the data. By con- Obviously, good experimental practice should use for the
trast, the fitting procedure fails in Fig.(H). The intrinsic ~ €xtraction of the Fisher parameters not a single mask but
nonlinearities in the data of Fig(H) are different from those Masks of varying sizes. It is clear that the peak value of the
characteristic of the Fisher equatifcompare Eqs(1) and ~ Profile, up,, will decrease as the mask size is decregsed
(11)]. Some of the data features in Figh}, as, for example, ternatively as the diffusion coefficient is increasedow-
the change in concavity and the zero derivative at the borde@Ver, what is the precise dependence of the stationary profile
of the mask cannot be reproduced by the analytic solutio®n the size of the mask, as the size is varied? In answering
(7). Thus, we have shown here how one would determindhis question, one finds that a bifurcation behavior emerges:
clearly the applicability of the Fisher equation to a given setthere is a minimum mask size below which bacteria cannot
of observations. be supported because they diffuse into the harsh regions
How would one proceed if, in the light of experiment, the Where they die. We suggest that this effect, known in the
Fisher equation turns out to be inapplicable in this way? Westudy of phytoplankton bloomisl1], be used to validate the
suggest an additional prescription to obtain the form of themisher equation in bacterial population as follows.
nonlinearity from the stationary mask observations. The ob- The dependence of the peak value of the stationary bac-
served stationary bacterial profile ig(x). A numerical dif-  terial population ork is given in Eq.(9) whereas the depen-
ferentiation procedure can be made to proddte (x)/dx?. dence of the mask widthv on k is obtained by inverting
A plot of d2u;(x)/dx? versusu;(x), the different points cor- Ed. (10
responding to different values of would either confirm
Fisher behavior or point to nonlinearities, such as that in the
Nagumo equation, other than that assumed in the Fisher _ VD —
equation. Figure 2 illustrates this prescription in the context (ald)(1— K3+ k4)*1’2b
of the assumed observations in Fig&a)land Xb). The data
were numerically differentiated in each case and the second ([(K2+1)— (1— K2+ kH 12 (1—k2)} | 2
spatial derivative was plotted versusas showr(12]. X K[ 2— K2+ (1— K2+ k4172 k|.
While the quadratic nonlinearity characteristic of the
Fisher equation is compatible with Fig(@, the curvature of (12
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The conjunction of Eqs(9) and(12) yields the dependence 100
of the profile peak on the mask size. For a given set of Fisher
parameters, a decrease in the mask widih fPom large

values causes a decreasekinThis decrease is monotonic. 075
The valuek=0 is reached at a finite value of the width. In
this limit, the elliptic function cdB¢,k) becomes its trigono-
metric counterpart cogg), and Eq.(10) reduces to

w
E\/a/D

Thus, there is a critical sizewg, of the mask,

D 0.00
2we=m\/—. (14) i

No stationary bacterial population can be supported below
such a size. An excellent experimental check on the applica- FIG. 3. Reduction of the critical size of the mask as a result of
bility of the Fisher equation could be the determination ofthe finiteness oé outside the mask. Shown éa is the dependence
this bifurcation behavior. On the basis of the quofé&¢b] of the maximum of the profiley,,, on the width of the mask. For
valuesD~10"5 cr‘r12/s, a~ 1074/51 we obtain the critical comparison we giveb), theu,, dependence onv2 in the Dirichlet
mask size to be of the order of half a centimeter, a limit that@se- For cas@, the inset shows the actual profiles for several
should be observable. values of the width.

If we relax the condition that the environment outside the
mask is harsh enough to ensure zero population of the ba¢isher equatiorf2) in the infinite-time limit when a station-
teria, Dirichlet boundary conditions used in the previousary mask of a given width shades the bacteria under it from
analysis are not appropriate. In the steady state, the bacterighrsh conditions outside it. Such stationary mask experi-
concentration just outside the borders of the mask wouldnents we propose are easier and more direct for the purposes
then be different from zero as a result of finite diffusion. of the determination of the validity of the Fisher equation,
While the elliptic function solution in Eq(7) (but without 414 for the extraction of the parameters of the equation. It is
the Dirichlet boundary conditignis appropriateinsidethe ;5 ggestion that parameters extracted in this manner may
mask, it turns out to be exceedingly difficult to find a solu- be used subsequently for the analysis of moving mask ex-

o dethe sk one s ot I e Sy 3, i et conaanc 1 e ekt of 0
9 parameter values.

value ofa, one gets the requirement that¢) be negative. We have indicated explicitly how the extraction of the

This is not_ aIIowg_bIe, sinca(¢) is a bactferlal density that Fisher parameters may be carried out. The numerical fitting
must remain positive. Other known solutions P
procedure in Fig. (g shows the parameters relevant to the

0.50

u

cog =0.5. (13 m

20

(3/2)(alb) hypothetical observations to beD=10°cn¥/s, a
ug)=———— (15 =10*s1l, b=108cm’s, and w=11cm, while the
\/55 nomeq=0.8071[16]. The procedure does produce param-
coslf S eter values when applied to Fig(hl but the quality of the

fits is poor. Such a situation would signal timapplicability

are also rejected on account of their patent negativity. It i°f the Fisher equation. The data in FigblLhave been gen-
possible, however, to obtain reasonable solutid@ if itis  erated from the Nagumo equation whose intrinsic nonlineari-
assumed that the bacterial densities outside the mask are §@s are incompatible with those of the Fisher equation as is
small that the quadratic term proportional lomay be ne- Visually clear from the_ best fits. We have shown in Fig. 2
glected in the Fisher equation for the analysis in the exterioPoW general manipulations of the observed data may be used
of the mask. Such an analysis leads to a smaller critical siz€ Suggest the particular form of nonlinearity to be used in
relative to that in Eq(14). Figure 3 shows the dependence of the model. We have also concluded that the critical size ef-
u,, on the mask size for both the cases@finfinite and(b) ~ fect that arises directly from solutlo(ﬂ) is proba}bly within .
finite (b) (negative a outside the mask. The inset shows the Observable limits for bacterial dynamics, the size we predict

x dependence of the solution for the latter case. in light of quoted parameters being of the order of 0.5 cm.
This conclusion would necessitate modification if the actual

values ofD anda are different from those currently believed.
While rich from the point of view of nonlinear dynamics,
Our interest in the present paper being in the determinathe Fisher equation is, surely, a highly simplified object from
tion of the applicability of the Fisher equation to experimentsthe biological point of view. It could by no means provide a
currently being conducted on bacterial dynamics in Petruniversally valid transport instrument for the studies of sys-
dishes, we have displayed an explicit solutiof) to the  tems as complex as bacterial colonies. Unaided, the Fisher

IV. REMARKS
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equation would contribute little to the diversity of bacterial tion interactions produce an influence function and conse-
behavior in biofilms and related systems. Nevertheless, inquently striking patterngl5] in bacterial populations.
vestigations such as the present one have the potential to
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