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Abstract

The full quantum dynamics of many bosons that are initially completely
localized on one site of a symmetric dimer is investigated in the small enneiling
amplitude regime. The number difference of bosons between the two equivalent
sites of the dimer exhibits rich behaviour on different timescales, ranging from
small amplitude oscillations and collapses and revivals, to coherent tunnelling.
We show that this complex quantum evolution is completely accounted for
by analytical expressions. A general formula is obtained at a higher order of
perturbation theory for the splitting of quasi-degenerate energy levels. The
splittings of the two highest pairs provide the characteristic frequencies of the
intermediate and Jong timescale dynamics.

“The boson-Hubbard dimer Harniltonian has been used for describing both

(i) two coupled intra-molecular symmetric stretching vibrational modes, taking into account
the anharmonicity of the bond {1, 2], and
(ii) a Bose—Einstein condensate (BEC) confined in a double-well potential, in the framework
of the so-called two-mode approximation {3].

For more details see [4] and references therein. In the BEC context, recent theoretical

studies [3, 5] address the fall quantum dynamics of the syster beyond the mean-field Gross—'

Pitacvskii equation. Experimentally, this quantum regime has been investigated not in the
double-well potential but in an optical lattice [6, 7]. '

Here, we investigate the many-body quantum evolution of the initial state in which all
the bosons are localized on one site of the symmetric dimer, in the case where the {unnelling
amplitude between the two traps is relatively small. Although at short timescales the dynamics
is identical with mean-field predictions, richer behaviour is observed at larger timescales. On
the one hand, the self-trapped dynamics exhibits collapsesand revivals, which correspond to the
vanishing and the subsequent restoring, respectively, of the oscillation amplitude. Collapses
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and revivals constitute characteristic signatures of quantum evolution, and they bave also
been observed in quantum optics [8, 9]. Or the other hand, at even longer timescales,
coherent tunnelling takes place at the initially unoccupied trap of the double well, due to
the Schrijdinger-cat relevant cigenstates that are implied by the symmetry of the system. A
detailed understanding of this multiple-timescale dynamics is provided in terms of the energy
spectrum, through precise analytical relations derived using results obtained from perturbation
theory.
The boson-Hubbard Hamiltonian reads
H = —«(biby + blby) + U(B}blb1 by + b bibabs). 1

In this equation b,-t and b; are creation and annihilation operators, respectively, of bosons at the
ith well (i = 1, 2), « is the tnnelling amplitude between the two sites and U represents the
interaction energy between pairs of bosons that are confined in a particular well {4].

From now on we use dimensionless quantities. The interaction energy U/ defines the unit
of energy and the dimensionless tuanelling amplitude k = x/ U remains the only parameter in
the Hamiltonian. In the BEC case this parameter can be conveniently tuned by varying both «,
through alterations of the powér of the laser that induces the barrier of the double-well [ 10, and
{/, by tuning the s-wave scattering length through Feshbach resonance [11]. In this study, we
restrict curselves to the small k regime. The dimensionless ime is T = %t, and w represents
a dimensionless frequency (the actual frequency is w% X

In figure I, we show the time evolution of the difference, N2 — Ny, of the number of bosons
occupying the two traps, divided by the total number of bosons, N. The initial condition is
Nz = N and Ny = 0. The numercal solution is obtained through directi-diagonalization
of the Hamiltonian (1) and decomposition of the initial state in the basis of the energy
cigenstates. At short timescales we observe small amplitude oscillations around the initial
condition (figure 1(a}). This oscillatory dynamics coincides with the corresponding behaviour
of the solutions of the discrete nonlinear Schridinger (DNLS) dimer[12-14], which constitutes
the mean-field limit of the bosor-Hubbard Hamiltonian (1) {15). For small &k, we are in the
strongly self-trapped regime of DNLS. At longer titnes, while the bosons still remain localized
in the initially occupied trap, the full guantum dynamics differentiates from that of DNLS, and
exhibits collapses and complete revivals (figure 1(b)). As we see below, the two sufficiently
close frequencies that are responsible for the resulting beat at this timescale are provided by
the splitting of the second highest quasi-degenerate pair of energy levels. Finally, at very
large times (figure 1(c)), all the bosons coherently tunniel back and forth between the two traps
{notice the scale on the abscissa of figure 1(c)). This behaviour is due to the fact that there is
no eigenstate of the system that is localized in one trap, and as a result the initial state has 1o
be decomposed to the symmetric and antisymmetric combinations of localized states at each
trap. The splitting of the quasi-degenerate pair of those higher lying energy levels provides
the corresponding mnnelling frequency [2, 16]. -
~ Before interpreting these numerical results with the belp of apalytical solutions, we briefly

recall the structure of the energy spectrum of Hamiltonian (1) for small values of k [4). Fora
system with N bosoas the energy spectrum comprises N+ 1 eigenvalues. Atk = 0, degenerate
pairs of energy levels are formed. The degenerate eigenvalues are given by

N N

1
Emt=2m2, mziorl,...,—i-—_-l.—z-, @)

where m is a positive integer or half-integer, depending on whether N is even or odd,
respectively. For even N, the ground state is non-degenerate, and has energy En—g = 0. Ask
increases from zero, the degeneracy is gradually lifted, starting from the lower levels (smaller
m), with the sense that for fixed & the amount of splitting A En+ decreases exponentially with s,
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Figure 1. Time evolution of the relative boson number difference between the two sites of the
dimer for differcnt timescales. The dimensioniess manclling amplitede is & = 0.5 for a system
with N = 10. The continuous curves represent pumerical results. The inset in (b) and the open
circles in (a) and {c} comespond to analytical results provided by equation (3).

{This figure is in colour only in the electronic version)

For example, the splittings A £ 1* and A Eq+ are of the order of k and k2, respectively [4], while
for the highest energy levels, E s their splitting is of the order of k¥ [2]. As a result, the
higher energy levels form quasi-degenerate pairs for relatively small k {op to a value of &
depending on A and the specific level En» [4]). Below, we derive an expression for the
splitting of the arbitrary quasi-degenerate pair, A En+, by generalizing the method used in [2]
for the calculation of AE y+.

Using perturbative results for the eigenstates of the boson-Hubbard dimer [4], we are able
10 obtain an analytical formula goveming the dynamics of the relative number difference. We
have used the standard formula for the evolution of an observable in quantum mechanics, in
terms of its matrix elements among the energy eigenstates and the comresponding projections
of the initial state. Having available a perturbative expansion for the energy eigenstates allows
a successive calculation of different order tecms describing the dynamics of the observable.
Leaving the details of the calculation for an extended article [17], where different initial
conditions are also considered, we show the final result for our present case up to second order
ik at the amplitsdes of the cofresponding Bobr frequencies provided by the energy spectrum
of Hamiiltonian (1): :

N — M _ k2 _Iy_ _
__._.N...-_ = cos{wpT) + m[ 3 fcos(an ) — cos{wgt)]
4+ 2c08(awy ) cos(%r) — cos(en 1) — COS((D(}T.’)]. 3)

In this expression, the frequencies wp and @ comespond to the splittings AE s+

Fi
and AE s _ of the two highest quasi-degenerate energy pairs, respectively (see equations 8)
and (9) below). The other frequency o, represents the difference E%t - E(%_I)t, which, up
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to second order in k, is given by [4]

2 N+1

Before we proceed to the derivation of the analytical expressions providing ey and e,
we comment on some characteristic terms of equation (3). This formula provides an accurate
description of the quantum dynamics, as can be seen from figure 1. The frequency @y, {of
order x%) is much larger than both ey (of ordes k™) and w; (of order k¥ —2), and is responsible
for the short time dynamics appearing in figare 1(a). If we consider that wy and @, are
small encugh to be neglected, i.e. wp = 0 and w; = 0, then equation (3) reduces [17] to
the comresponding resuit of DNLS [14]. On the other hand, the cos(%5 7) which multiplies
the higher frequency term, cos(w, 1), provides the beat that is responsible for the exhibited
collapses and revivals at timescales determined by e (figure 1(b)). All the harmonic functions
containing the frequencies w, and w; in equation (3) are of small amplitude (of the order of
&%) and are unable to completely transfer the bosons from one trap to the other (which requires
oscillations of %M. from 1 to —1). Only the first term of the right-hand side of equation (3),
cos(agt), can prcmdc this coherent tunnelling, that, consequently, takes placc at timescales
determined by wy (figure 1(c)}.

The frequency wq = AE 5t appearing in equation (3) is already known from Bernstein
et al {2]. We can calculate the- = AEp ) by applying similar arguments as those used
in that work. In particular, we derive a more general result for the sphtung of any quasi-
degenerate pair, A Ey«, and, from this, we directly obtain & form = 7 — 1. Since we are
following the same lines as in [2], we merely give the main points of the calculation here.

For our purposes, we define the diagonal (N + 1) x (¥ + 1) matrix Hp with elements
(Ho)ow = 202, n = -%,..., ¥, and the wridiagonal coupling matrix V with non-zero
elements Vot = ky/¥(Z + 1) —n(1~1) = Vo1.1 (all the other matrix elements of V
are zero). Hy corresponds to the unperturbed Hamiltonian (1) for k == 0, and the symmetric V'
describes the tnnelling term (apart from a sign that has no cﬁ'ect in thc following calculation).
For any particular splitting of interest, AE,+, m = O or 2, cees 2 , we define the diagonal
matrix Ly = Hy — Enl, where E,, = 2m? is the doubly degenerate eigenvalue and [ is
the (N + 1) x (N + 1) identity matrix. We then have (L), = 0 forn = dm, while
(Losdnn = 2(n* —m?) forn # =m. We also define the diagonal matrix

0, n=%m
(L en = 1 ®)
Wmy A

Taking into account the arguments of [2], we obtain that the splitting AE+ is provided at
the 2mth order of pertusbation theory, through the non-diagonal elements, $212 = 2, of
the projection on the 2 x 2 subspace of degeneracy, of the matrix that describes the coupling

~ between the two degenerate (at k = 0) states |¥},} and j¥Z2). These are the states containing

L4m bosons i m one well and & — m inthe other: [(¥2) =N =F +m, My = X m)and
;wl) =N =Y-mMm= —+m) In particular,
AEns = 242121 = 24V V" s = 2V 1AL It
x Vm—l,ml—Z(L,;l)m—?..m«—?. X--- X (L;l)—mﬂ.—-mi-l V—m+l,—ur|- (6)

The physical interpretation of this expression is the following: since the coupling V represents
transfer of just a single boson from one well to the other, the ‘shortest” (most direct) way
to directly couple the degenerate states %L} and |WZ)} by moving one boson per siep—as
indicated by the perturbation—involves 2mn steps, provided by the 2m matrix elements of V in
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_equation {7) yields that form = &
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Figure 2. The logasithms of the characteristic frequencies (a) «y, determining the collapses and
revivals at intenmediate timescales, and (b) wp, determining the coberent funnelling at very long
fimescales, as a function of k for different numbers, N, of bosons. The continuous curves show
the analytical results obtained from equations (9) and {8), respectively, while the filled circles
correspond to dirsct oumerical caloulatons.

equation {6). This is the reason that the degeneracy is lifted at 2mth order. The specific result
of equation (6} is obtained by the particular form of the matrix that couples the |91} and |92},
and represents the unique strongest conrection between them {2].

Taking into account the matrix elements of V and L_!, the calculation of the product
appearing in equation (6) is straightforward. The final result is

K2 (% +m)t

Abnt = o t(2m — D (L~ )l

0

For the special cases m = 1and 1, we obtainthat A Ej= = 2{Vio(LT Yoo Vo1l = 25 +1)
and AEys =2V 4 = 2% f8(& + 1)+ } = k(N + 1), in accordance with the perturbative
results prcscmed in {4]. Regarding the frequencxcs o and w; appearing in expression (3),

2

N
— N
QJO—AE%*—& ZN“Z(NM—I)!' (8)
while form = § — 1
o H,z(N_ l)(N—Z) C e - R
w) = AE(g_!)* =k m‘. (9)

The result (8) coincides with that of [2].

In figure 2, we compare the analytical expressions (8) and (9) with the correspondmg
splittings obtained through direct diagonalization of Hamiltonian (1). We see that the above
formulas are in excellent agreement with the numerical results. Although the Jong timescale
phenomena {collapsesfrevivals and coherent tunnelling) occur for systems with any number
of bosons, the time needed for their manifestation is abruptly increased with N. Since the
Hamiltonian (1) conserves the number of atoms, in the BEC case it does not allow losses of
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the condensate due to decoherence, finite temperature effects etc. This fact, combined with the
rapid decrease of the characteristic frequencies wy and wy with the munber of bosons, prevents
the observation of the intermediate and long time behaviour, as revealed in figures 1(b) and (c),
in current BEC experiments. However, these phenomena may be relevant in the context of the
intra-molecular symmetric stretching modes, where a few vibrational quanta can be excited.

In summary, we have discussed the full quantum dynamics of a system of many
interacting bosons initially occupying one site of a symmetric dimer. Rich behaviour is
exhibited on multiple timescales. These results make contact with previous multiple-timescale
investigations of a related problem [18], as well as with a study of BEC wnnelling [5] in which
the exponential dependence of the tunnelling time on atom number has been numerically
demonstrated. Accurate analytical results have been obtained in the present paper that explain
in detail the different characteristics of the evolution and provide a full physical interpretation
of the observed behaviour. The long and intermediate timescale dynamics, which differentiates
from the corresponding mean-field evolution, is determined by small splittings of the highest
lying quasi-degenerate pairs of energy levels. An analytical formula has been derived for the
splitting of any quasi-degenerate level that appears in the energy spectrum at relatively smatl
values of tunnelling amplitude.
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Note added in progf. The result of oquation (7) has been alternatively derived in equation (29) of [19].
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