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Simple analytical considerations are applied to recently discovered patterns in a generalized Fisher equation.
The generalization consists of the inclusion of nonlocal competition interactions among the constituents of
the field exhibiting patterns. We show here how stability arguments yield a necessary condition for pattern
formation involving the ratio of the pattern wavelength and the effective diffusion length of the individual
constituents. We also remark on how a mode-mode coupling analysis may be developed that might be useful
in shedding some light on the amplitude of the patterns.

Introduction

Patterns arise in many physical, chemical, and biological
contexts. Chemical reactions, movement of granular assemblies,
and populations in epidemics all exhibit patterns of various
kinds. It has been shown recently that the Fisher equation used
frequently for investigations of biological or ecological systems,
when generalized to include spatially nonlocal competition
interactions, leads to interesting patterns in the steady-state
density.1,2 In this paper we attempt to shed some analytical light
on the formation of these patterns. The considerations we discuss
apply to chemical and physical systems as well as to ecological
and biological entities. The original Fisher equation3,4 is

whereu(xb, t) is the population density of the constituents under
investigation (in a biological context, these might be bacteria)
at positionxb and timet and D, a, andb are respectively the
diffusion coefficient, population growth rate, and competition
parameter. The generalized equation1,2 features competition
interactions linkingu(xb, t) at point xb with u(yb, t) at point yb
through an influence functionfσ(xb,yb) of rangeσ

Ω being the domain of the system. The physical origin of the
nonlocal aspect in the competition interaction is easy to un-
derstand. That interaction is mediated by the consumption of
the same given resources by different individuals whose density
u(xb, t) measures. These resources can themselves be moving
from place to place. One example is the diffusion of nutrients
(and, indeed, in some cases the release of toxic substances) in
the case whereinu(xb, t) is the density of bacteria. The motion

of the nutrients, if fast enough, can, in this manner, be a cause
for the assumed nonlocality in the competition interaction.

The introduction of the finite-range competition interactions
has been found1 to give rise to the emergence of patterns in the
steady-state densityu(xb) with the following features:

(i) No patterns appear in the two extremes of zero range, in
which the generalization reverts to the Fisher equation, and full
range, in which the population density is linked equally to all
points in the domain.

(ii) The pattern structure depends crucially on features of the
influence function, specifically its cutoff length and its width.

(iii) A critical quantity determining the formation of patterns
appears to be the ratio of the cutoff length of the influence
function to its width.

The first of these, that no patterns appear in the two extremes
including, in particular, the full range case, has been proved
analytically by one of the present authors earlier.2 An analytical
investigation of the two other features is given below.

Condition for Pattern Formation

To address the question of why patterns form, we will follow
a standard procedure5-7 to analyze the stability of a nonhomo-
geneous solution. We consider for simplicity a one-dimensional
version of eq 2 and substitute in it

Hereu0 is the homogeneous steady-state solutiona/b. Consider-
ing periodic boundary conditions and retaining only first-order
terms inε, we obtain the following dispersion relation between
the wavenumberk of any mode of the pattern and the rateæ at
which it tends to grow:

In this expression, the influence function (assumed to be even)
is represented by its cosine (Fourier) transformF(k) defined as
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∂u(xb, t)
∂t

) D∇2u(xb, t) + au(xb, t) - bu2(xb, t) (1)

∂u(xb, t)
∂t

) D∇2u(xb, t) + au(xb, t) -

bu(xb, t)∫Ω
u(yb, t) fσ(xb,yb) dy (2)

u(x, t) ) u0 + ε cos(kx) exp(æt) (3)

æ ) -Dk2 - aF(k) (4)

F(k) ) ∫Ω
cos(kz) fσ(z) dz (5)

10505J. Phys. Chem. B2004,108,10505-10508

10.1021/jp040090k CCC: $27.50 © 2004 American Chemical Society
Published on Web 05/22/2004



Stable steady-state patterns require that

whereλ ) 2π/k is the wavelength associated with thek mode
of the Fourier expansion of the pattern.

Condition (6) provides a necessary condition to check for
the existence or absence of inhomogeneity, i.e., patterns, in the
steady state. We see from (6) that the Fourier transform of the
influence function at the wavelength under consideration should
be negatiVe for the patterns to appear and that its magnitude
should be large enough. One way of understanding this condition
is to recast it as requiring that 2π times the “effective diffusion
length” should be smaller than the wavelength for the patterns
to occur. By the effective diffusion constant, we meanD divided
by -F(λ), which is a factor decided by the influence function,
and by the diffusion length, we mean the distance traversed
diffusively in a time interval on the order of the inverse of the
growth rate. If the influence function is smooth such as in the
case of a Gaussian in an infinite domain, the Fourier transform
is positive and no patterns appear. A cutoff in the influence
function produces oscillations in the Fourier transform, which
can go negative for certain wavelengths. The reported finding1

that the cutoff nature appears necessary to pattern formation
can be understood naturally in this way.

Specific Examples

Let us consider, in turn, three cases of the influence function
that we have used in our earlier investigations:1 square, cutoff
Gaussian, and intermediate.

First we take

whereθ is the Heaviside function. The influence function is
thus a square of the cutoff range measured byw from its center.
We will consider the case here when the rangew is smaller
than, or equal to, the domain lengthL. Equation 4 then involves
an integral from 0 tow and gives

In terms of dimensionless parameters

we have

which we plot in Figure 1 for three different values (50, 10,
and 2) of the ratioη of the width to the diffusion length (not
effectiVe diffusion length). For the third case, there are no
patterns: diffusion is strong enough to wash them out. For the
intermediate case, patterns can occur with wavelengths corre-
sponding to values of aroundk′ ≈ 0.4, while for theη ) 50
case, they occur aroundk′ ≈ 0.1.

The earlier finding1,2 that no patterns appear for extremes of
the range of the influence function is clear from eq 9. As the
influence width vanishes, i.e., asη goes to zero, both terms in
æ are negative and there can be no steady-state patterns: we
recover the solution for the local limit, corresponding to eq 1,
whenw f 0. Because the boundary conditions are periodic in
a domain of lengthL, there are only the allowed valuesk )
nπ/L of the wavenumber. Therefore, in the opposite limit of
full range, i.e.,w f L, the sine term vanishes,æ′ ) -k′, and
again there are no patterns.

Precisely, the same qualitative behavior occurs for other
nonsquare influence functions such as the Gaussian with a
cutoff, i.e., for

We again consider the case when the cutoff length does not
exceed the domain length. This leads to the Fourier transform
of the influence function involving an integral from 0 tow. In
these as well as other cases considered, it should be appreciated
that the domain lengthL, if taken to be smaller than the cutoff
length, becomes itself the cutoff length: factors such askw
appearing in the Fourier transform become thenkL instead.

For this cutoff Gaussian case, the square case dispersion
relation (8) is replaced by

The dimensionless version (9) is replaced by

HereR and 2â are the ratios of the cutoff length to the range
and of the range to the diffusion length respectively:

What is analogous toη in the square case is their product 2Râ

Figure 1. Dispersion relation (9) between the dimensionless growth
exponentæ′ and wavenumberk′ plotted for different values of the ratio
η of the influence function range to the diffusion length (see the text).
Values ofη are 50 (solid line), 10 (dashed line), and 2 (dotted line).
Patterns appear for those values ofk′ for which æ is positive.

f(x - y) ) 1

σxπ erf(w/σ)
exp[-(x - y

σ )2]{θ[w - (x - y)]

θ[w + (x - y)]} (10)

æ ) -
a exp[-(kσ/2)2]

2 erf(w/σ) [erf(wσ - ikσ
2 ) + erf(wσ + ikσ

2 )] - Dk2

æ′ ) -
exp(-k′â2)

2 erf(R)
{erf(R - ik′â) + erf(R + ik′â)} - k′

(11)

R ) w/σ

2â ) σxa/D

λ > 2πx D
-aF(λ)

(6)

f(x - y) ) 1
2w

{θ[w - (x - y)] θ[w + (x - y)]} (7)

æ ) -a
sin(kw)

kw
- Dk2 (8)

æ′ ) æ/a

k′ ) kxD/a

η ) wxa/D

æ′ ) -
sin(k′η)

k′η - k′ (9)
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) wxa/D. Plots that are essentially the same as those in
Figure 1 can be drawn for this Gaussian case.

It is interesting to note that, while there is a single quantity
η in the square case, there are two quantities,R andâ, in the
cutoff Gaussian case. This arises from the fact that, although
there are generally two lengths associated with any influence
function, the cutoff length and the width, the latter is infinite
for the square case. The width has been defined in ref 1 as being
inversely proportional to the second derivative of the influence
function evaluated at its central point and has been denoted by
the symbolΣ. The cutoff length measures the distance beyond
which the influence function is exactly zero and has been
denoted1 by êc. For the cutoff Gaussian, thisêc ) xc ) w. The
symbolxc has been used in ref 1 andw in the present paper.
The widthΣ obeysΣ ) σ for the Gaussian case andΣ ) ∞ for
the square case.

The square and the cutoff Gaussian possess an abruptness
feature that would not be present in a physical system. For this
reason, we introduce a general function1,8 that is smooth and
that we call theintermediateinfluence function:

In addition to the smoothness property of this function, it has
the feature that it reduces to a square or a Gaussian in the
respective limitsr f ∞ and r f 0. The cutoff length of the
influence function is given by

We will follow the notation

and evaluate the Fourier transform of the influence function by
calculating the integral9

for

Γ andJ being the gamma and Bessel functions, respectively.
The dimensionless dispersion relation analogous to eq 9 is, for
this general case,

Here, as in the square case,η ) wxa/D is the ratio of the
influence function width to the diffusion length.

It is straightforward to obtain the two limits, square and
Gaussian, from this dispersion result (15) for the intermediate
influence function. In Figure 2, we plot the intermediate case
for ν ) 1 and see the same general behavior as that in the

Gaussian and square counterparts (see, e.g., Figure 1). Steady-
state patterns appear only aroundk′ ) 0.1.

Remarks

We see that four lengths appear in this pattern formation
problem, in addition to the (obvious) size of the domain: the
pattern wavelengthλ, the (cutoff) widthw and rangeσ of the
influence function, and the diffusion length, which is the dis-
tance covered by diffusing in a time proportional to the
reciprocal of the growth ratea and is proportional toxa/D.
The precise manner in which the interplay of these four lengths
gives rise to or suppresses the patterns is clear in the above
discussion.

We note in passing that the Fourier mode expansion of
u(x, t)

in eq 2, with kn ) πn/L, and the orthogonality properties of
trigonometric functions yield separate equations for then ) 0
mode

and for other modesn * 0

Equations 17 and 18 are the complete set of equations for the
evolution of the amplitudes of all modes in the nonlocal problem
given by eq 2. A simultaneous solution of the algebraic
equations obtained by putting the left-hand side of eqs 17 and
18 to zero leads to the evaluation of the amplitude of the
involved modes. This would be a numerical undertaking. To
make further progress analytically, we consider the situation
near criticality (the onset of the pattern from a homogeneous
background). We follow standard procedures5 to derive the

f(x - y) )
Γ(1/r + 3/2)

xπwΓ(1/r + 1)[1 -
r(x - y)2

(2 + 3r)σ2]1/r

θ[w -

(x - y)] θ[w + (x - y)] (12)

w ) x2 + 3r
r

σ (13)

ν ) 1/r + 1/2

2w-2νΓ(ν + 1)

xπΓ(ν + 1/2)
∫0

w
cos(ks)[w2 - s2]ν-1/2 ds )

( 2
kw)ν

Γ(ν + 1) Jν(kw) (14)

k > 0, w > 0, Re[ν] > 1/2

æ′ ) -( 2
k′η)ν

Γ(ν + 1) Jν(k′η) - k′2 (15)

Figure 2. Dispersion relation (15) between the dimensionless growth
exponentæ′ and wavenumberk′ plotted for theintermediateinfluence
function. Values ofη are as in Figure 1: 50 (solid line), 10 (dashed
line), and 2 (dotted line). Patterns appear for those values ofk′ for
which æ′ is positive.

u(xb, t) ) ∑An(t) cos(knx) (16)

dA0

dt
) aA0 - bA0

2 - b∑
n)1

∞ An
2

2
F(kn) (17)

dAn

dt
) -Dkn

2An + aAn - bA0An[1 + F(kn)] -

b∑
j)1

n-1AjAn-j

2
F(kj) - b ∑

j)n+1

∞ AjAj-n

2
[F(kj) + F(kj-n)] (18)
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expression for the evolution of thesinglemode, sayn ) m, for
which æ > 0:

Taking into account that the evolution ofA0 near criticality will
be

we can get the stationary solution of eq 20 by putting its right-
hand side equal to zero, introduce the approximation of that
solution correct to first order inAm into eq 19, and obtain for
the mode forming the pattern

Equation 21 exhibits the expected exponential growth at the
rateæ along with the cubic saturation term, given thatF(km) <
0 at criticality.

We have also studied a number of additional features of this
problem, including influence functions that do not peak at the
center, and shown that the sharp cutoff requirement discussed
in the present paper may be relaxed for such cases. Thus, while
a single Gaussian influence function peaking at the origin will
certainly not give rise to the patterns we have discussed, because
the Fourier transform cannot become negative, a symmetric sum

of two displaced Gaussians will give rise to patterns.10 We have
also studied the time evolution of patterns for a variety of cases
in two-dimensional as well as one-dimensional systems. These
and related studies, including possible connections of our
analysis to more recent work on patterns,11,12 will be reported
in a future publication.
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dAm

dt
) -Dkm

2Am + aAm - bA0Am[1 + F(km)] (19)

dA0

dt
) aA0 - bA0

2 - b
Am

2

2
F(km) (20)

dAm

dt
) [-Dkm

2 - aF(km)]Am +
b2F(km)

2a
Am

3 )

æAm +
b2F(km)

2a
Am

3 (21)
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