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The nonlinear sliding friction of a dimer over a substrate is studied within a one-dimensional model,
consisting of a vibrating dimer(two masses connected by a spring), internally damped, sliding over a sinu-
soidal potential. Molecular dynamics simulations show that the friction force has an approximatev−3 depen-
dence if the velocity is sufficiently large, and that there is a striking periodic variation of the proportionality
coefficient with the ratio of the length of the dimer to the substrate wavelength. The nonlinear velocity
dependence was predicted earlier for a Langevin model of an adsorbed layer in the presence of strong external
force. We study it here in detail in the transient regime and without external force. We obtain the dependence
on key parameters(internal dissipation, dimer mass, substrate corrugation, and length ratio), and examine the
validity of the friction law. A semianalytical expression is suggested which confirms the numerical observations
in the high-velocity regime.
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I. INTRODUCTION

In the last two decades much progress has been made in
the fundamental understanding of the origin of friction.1 The
significance of this progress is particularly clear if we com-
pare it with what had been done in the centuries after the
friction laws were stated by Amonton and Coulomb, and
elaborated upon by Leonardo da Vinci.2 Microscopic experi-
ments on friction,3 and subsequent theory and simulation
were started only in the last 15 years.4–7 Of the work that
remains to be done to achieve a coherent picture of this com-
plex phenomenon, an important aspect concerns nonlinear
sliding friction. In his seminal paper,8 Persson presented nu-
merical simulations in the nonlinear regime of an adsorbate
sliding over a periodic potential. He used a Langevin model
of interacting adlayer particles over a three-dimensional po-
tential periodic in the plane. Such a model is reasonable for
experiments of the kind performed by means of the quartz
microbalance.3 In addition to analyzing the model numeri-
cally, Persson found analytically the dependence of the ad-
layer steady state velocity on the applied force and showed
that the nonlinear sliding friction becomes linear at high val-
ues of the external force. Recently, Fusco and Fasolino9 re-
ported numerical findings of the sliding friction of a dimer
(two atoms attached by a spring) when the dimer moves over
a one-dimensional periodic potential and is additionally sub-
jected to external dissipation. They considered different val-
ues of the dimer-substrate commensuration ratio.

Ten years separate the original finding of Persson and the
recent study of Fusco and Fasolino. Yet, there is no “experi-
mental” confirmation of the nonlinear friction law, nor a
study of its validity, or its dependence on the substrate topol-
ogy. Several questions may be raised: What happens in the
high velocity regime in the absence of the external force?
What is the dependence of the nonlinear friction on the shape
of the substrate? Is the nonlinear friction of a dimer different
from that observed in an extended adsorbate? In order to

answer the first two of these questions, we present here re-
sults for a sliding dimer over a periodic substrate potential.
To focus on the nonlinear part of the friction, and at the same
time to improve the signal-to-noise ratio, we perform simu-
lations at zero temperature and without external dissipation:
friction acts, in our model, only on the internal motion. We
focus on the time behavior of this dimer in the absence of
external forces. We compare our results with the prediction
of Persson for the adsorbate with external force, and look for
similarities and differences. We also suggest an analytical
explanation supporting our results.

II. MODEL

A single particle moving in a periodic potential provided
by the substrate would not exhibit friction as its energy
would be repeatedly transformed from potential to kinetic,
with no overall depletion. Some studies have addressed the
effective friction of such a particle in the presence of noise.
Such noise can be externally imposed10,11or produced effec-
tively by the motion of a harmonic chain of atoms(rather
than a fixed potential) as representing the substrate.12 We
consider the system in the absence of noise. In the sliding
object, let a second particle be attached to the first. A part of
its sliding energy can be converted into internal vibrational
energy. It is trivial to see that the equations

mẍ1 = + ksx2 − x1 − ad +
2pu0

b
sinS2px1

b
D ,

mẍ2 = − ksx2 − x1 − ad +
2pu0

b
sinS2px2

b
D , s1d

wherex1,2 are the coordinates of the two particles of equal
massm, andk, a, b, u0 are, respectively, the spring constant,
equilibrium length of the dimer, wavelength of the substrate
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potential and half the amplitude of the potential, which lead
to coupledequations for the center of mass coordinatex+ and
the internal coordinatex−. The latter are defined as half the
sum and difference ofx1,2, respectively. It is the presence
(and additionally, the nonlinearity) of the substrate potential
that is responsible for the coupling between the otherwise
independent coordinatesx+ andx−. Analytic solutions of the
coupled equations do not appear possible. The dynamics can
be very complex depending on the initial energy, and nu-
merical procedures become necessary.

The “normal” behavior of the dimer includes oscillations
within potential barriers for low initial energy, and ballistic
motion for high initial energy but with a velocity periodically
modulated by the substrate potential. As the initial energy is
increased, this oscillation becomes smaller compared to the
dc component. For an intermediate narrow range of initial
energies, the evolution is unpredictable and exhibits chaos.
As an illustration of some of this behavior, we show in Fig.
1 the center of mass evolution for two different initial veloci-
ties, below and above the upper chaos threshold, respec-
tively. The behavior in the intermediate region shows three
characteristics as a result of the interchange of energy be-
tween translational and vibrational modes: forward move-
ment, backward movement, and temporarily no movement
represented by a plateau in the plot(aroundt<40 in Fig. 1).
However, this last is an unstable situation, as the system is
conservative: the internal energy can be reconverted into
translational energy allowing the dimer to slide again. This is
repeated forever in the absence of dissipation. Therefore, the
undamped dimer in a periodic potential is either trapped, or
executes a ballistic movement, or is in diffusive chaotic mo-
tion in the intermediate energy region. Such nonlinear dy-
namics of a dimer on a periodic substrate, without dissipa-
tion, was thoroughly addressed recently by Fusco, Fasolino,
and Janssen.13

To make the system more realistic, in the present paper
we assume that theinternal modeis subjected to damping at
rate g. This results in the following equations for the coor-
dinatesx+,−:

ẍ+ =
2pu0

mb
sinS2px+

b
DcosS2px−

b
D ,

ẍ− = −
k

m
s2x− − ad +

2pu0

mb
sinS2px−

b
DcosS2px+

b
D

− gẋ− s2d

While dissipation removes chaos from the system, the
coupling between coordinates makes it impossible to pro-
duce an analytical solution of Eq.(2). To proceed numeri-
cally, we use the algorithm of Verlet modified to allow for
velocity dependent forces. Thus, ifx is a generic coordinate,
Dt is a time increment, andzstd is the acceleration corre-
sponding to the forcesnot depending on velocities, we use

xst + Dtd =
2xstd − s1 − gDt/2dxst − Dtd + zstdDt2

1 + gDt/2
. s3d

III. NUMERICAL RESULTS AND PHENOMENOLOGICAL
LAW

Typical evolution of the center of mass velocity from
simulations of our model is in Fig. 2, and exhibits two dis-
tinct features: The rate of decrease of the center of mass
velocity rises sharply as time evolves; and the velocity ap-
pears to go to zero(except for the persistent small-amplitude
oscillations) in finite time. Thus, we see that effective friction
emerges from the conversion of the translational to internal
motion (which has an intrinsic sink), and that this friction is
nonlinear. It has an inverse dependence on velocity, being
stronger at lower velocities. Indeed, it appears to obey ap-
proximately the friction lawdv /dt =−hv−a, with solution

vstd
v0

= F1 −
sa + 1dht

v0
a+1 G 1

a+1
, s4d

wherev0 is the initial velocity. Equation(4) predicts a stop-
ping time ts given by

FIG. 1. Evolution of the center of mass coordinatex+ in the
absence of dissipation. Plotted isx+ vs timet from Eqs.(1) for two
different initial velocities, below and above the upper chaos thresh-
old, respectively;x+ is expressed in units ofb, t is in units of
bÎm/u0, andv0 is in unitsÎu0/m. In the present casea=1.4b and
k=2u0/b2.

FIG. 2. Evolution of the center of mass velocityv+std in the
presence of damping applied to the internal coordinate. Plotted is
v+std in units of Îu0/m vs time t in units of bÎm/u0. Parameters
here area/b=0.25, kb2/u0=1, andgbÎm/u0=4. Two insets show
the detail of oscillations at times much smaller(left lower inset) and
larger (right upper inset) than the stopping time. Solid lines in the
inset show the numerical results while the dashed lines represent
our proposed friction law.
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ts =
v0

a+1

sa + 1dh
. s5d

We plot in Fig. 3 the velocity dependence of the numeri-
cally obtained apparent stopping time and interpret it in
terms of Eq.(5). The plot provides clear evidence that the
exponent in expression(5) is a<3, with less than 2% error.

How does the coefficienth of this sliding friction depend
on the topology and dynamics of the system? To answer this
question, we vary the parametersa, b, u0, k, m, andg, and
the initial velocity v0 over wide regions. In fact it is only
necessary to do this for the relevant dimensionless quantities
a/b, kb2/u0, andgbÎm/u0, and the initial dimensionless ve-
locity v0

Îm/u0. The striking results are in Fig. 4. In addition
to confirming that the coefficient of proportionalityh is di-
rectly proportional tog,8 and also proportional tosu0/md2,
but independent ofk, we find an important result. The coef-
ficient h has a periodic dependence ona/b fitted excellently
by a simple sinusoid. All these results may be combined into
the following phenomenological friction law we propose:

dv
dt

= −
g

2
Su0

m
D2

sin2Spa

b
D 1

v3 . s6d

Agreement of the predictions of our law with numerical
simulations is remarkably good provided the initial velocity

is large enough and the times are not too close to the stop-
ping time. We will elaborate on its limitations below.

IV. ANALYTICAL CALCULATION

The internal coordinatex− has the natural frequencyv0

=Î2k/m. When scaled and translated throughj= sx−/a/2
−1d, the internal coordinate obeys[see Eq.(2)] the damped
driven oscillator equation

d2j

dt2
+ g

dj

dt
+ v0

2j = S4pu0

amb
DsinFSpa

b
Ds1 + jdG

3cosS2px+std
b

D . s7d

The complexity of this equation relative to that for a har-
monic oscillator driven linearly thorough a sinusoidally vary-
ing forcing term arises from two factors that appear on the
right hand side: thej dependence of the sin term and the
generally nonsinusoidalt dependence of the cos term. In Fig.
5 we have shown the behavior of the internal coordinate in a
typical case. We see there that the internal coordinate has a
small amplitude of oscillation throughout the evolution. If
we restrict our attention only to such a case,j may be ne-
glected with respect to 1 in the sin term above. Generally, we
may write, withx+s0d=0 without loss of generality

cosS2px+std
b

D = cosS2p

b
E

0

t

vssddsD = o
i

Bi cossvitd,

s8d

where the complext dependence of the center of mass ve-
locity has been resolved into Fourier components of frequen-
cies vi and coefficientsBi. With the notationAi =s2/ad
3s2pu0/mbdsinspa/bdBi, we therefore study the linear
damped oscillator

d2j

dt2
+ g

dj

dt
+ v0

2j = o
i

Aicossvitd s9d

whose behavior is known from textbooks. The coordinatej
may be decomposed into componentsji each of which sat-
isfies, after transients have died down

FIG. 3. Evidence for our proposed power lawsa=3d. Shown is
the relation between the apparent stopping timets and the initial
velocity v0, for a/b=2 and different sets ofg, andk. Velocity and
the stopping time are given in units ofÎu0/m andbÎm/u0, respec-
tively; g is in units ofÎsu0/md /b and k is in units of u0/b2. The
lines are a linear regression of the log-log relation given consis-
tently by an exponent<4, thusa<3.

FIG. 4. Periodic dependence of the friction coefficienth on the
ratio of the dimer length to substrate wavelength. Plotted ish in
units of gsu0/md2 vs a/b.

FIG. 5. Internal coordinatex=x−−a/2 vs timet. Note the rela-
tively small amplitude of the oscillation supporting thex!a/2 as-
sumption;x is in units ofb, time is in units ofbÎm/u0, and param-
eters are the same as in Fig. 2.
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jistd =
Ai

Îsv0
2 − vi

2d2 + vi
2g2

cossvit − did, s10d

where the lag factordi equals tandi =vig / sv0
2−vi

2d for each
Fourier component. Dissipation of energy from the center of
mass motion into the internal coordinates occurs at the rateR
given by 2mgsdx−/dtd2=2mgsa/2d2oi sdji /dtd2 whose aver-
age, since the square of the sinusoidal term contributes 1/2,
is

R= mgSa

2
D2

o
i

Ai
2vi

2

sv0
2 − vi

2d2 + vi
2g2

= mgS2pu0

mb
D2

sin2Spa

b
Do

i

Bi
2vi

2

sv0
2 − vi

2d2 + vi
2g2 . s11d

We will now restrict our analysis to situations and time
domains in which we can replace thei sum by a single term
involving an average frequencyva, which may be weakly
dependent on time. We then have

cosS2p

b
E

0

t

vssddsD < cossvatd,

va being related to the center of mass velocityvstd through
va=2pvstd /b (the “washboard” frequency). Consider now
the case that the washboard frequencyva is much larger than
the natural frequencyv0 and the damping rateg. We can
then write

R= mgS2pu0

mb
D2

sin2Spa

b
DS 1

va
D2

. s12d

Equating the rate at which the internal mode gains energy to
that at which the center of mass loses it, viz., −2mvsdv /dtd,
we get the equation for the center of mass velocity

dv
dt

= −
g

2
Su0

m
D2

sin2Spa

b
D 1

v3 . s13d

This is precisely the result(6) we proposed above on the
basis of an empirical inspection of our numerical results.

The analytical argument we have presented is valid under
three assumptions. The first is that the amplitude of the in-
ternal dimer coordinate always remains small relative to the
equilibrium value of the length of the dimersj!1d. The
second is that the characteristic rate of variation of the center
of mass velocity, viz.,s1/vdsdv /dtd, is smaller than both the
natural frequency of the internal coordinate,v0, and the dis-
sipation rate,g. The third assumption is that the washboard
frequencyva which is proportional to the center of mass
velocity v is itself larger than the other characteristic fre-
quencies, viz.,v0 andg. Of these three assumptions, the last
is easiest to realize practically or understand physically. It is
valid provided we take the initial velocity to be sufficiently
large and the time considered not too close to the stopping
time. The specific values of the initial velocity required for
this validity are determined by the specific given values of
the system parametersv0 andg. In order to study the appli-
cability of the assumptions, we present Fig. 6, where we
compare the behavior of the dimer velocity according to ex-

pression(4) and with two numerical simulations made with
two different values of the spring constantk separated by a
factor of 500. At the time scale of the plot, it is hard to see
the difference between the analytical prediction and the
simulation with the smaller of the twok, while for the larger
k the discrepancies between simulation and analytical results
are quite evident.

The origin of the periodic dependence of the friction co-
efficient on the ratio of the equilibrium dimer separation to
the substrate wavelength, evident from Fig. 4 and from Eq.
(13), should be clear from our analytic argument given at the
beginning of the present section. Physically, the importance
of this commensurability of dimer and substrate lengths can
be understood as follows. Whena equals integral multiples
of b, the two masses constituting the dimer feel exactly the
same substrate force when in equilibrium. The overall effect
of this in-phase situation is that the internal motion is never
excited, and friction disappears. Analytically, this is also
clear from the sine term in Eq.(13), which vanishes identi-
cally for this case. On the other hand, whena equals semi-
integral multiples ofb, the two masses tend to be precisely
out of phase(counterphase), which is the most effective situ-
ation to excite the internal motion, and gives rise to maxi-
mum friction. Analytically, this is represented by the sine
term being equal to 1.

V. CONCLUSIONS

Our general aim in the present paper has been the inves-
tigation of some puzzling features of atomic friction. Specifi-
cally, we have pursued the dynamics of a model addressing
the sliding friction of a dimer. The model is simple: a linear
damped oscillator sliding in a sinusoidal periodic potential.
Yet, except for the limitation that it is restricted to a single
spatial dimension, it has the necessary and sufficient ingre-
dients to be an acceptable model for a real dimer or molecule
settled in a controlled microscopic sliding experiment. For
example, a molecule sliding along channels of a crystalline
well-oriented substrate14 might exhibit the described behav-
ior, provided that the temperature is so low that all external

FIG. 6. Comparison between the analytic prediction of our pro-
posed friction law 4(solid thin line without oscillations) and nu-
merical simulations for the center of mass velocityv+std vs time t.
Parameters area/b=0.5 andgbÎm/u0=1. Solid thick line and bro-
ken line are forkb2/u0 equal to 0.02 and 10, respectively. Velocity
is expressed in units ofÎu0/m and time is in units ofbÎm/u0.
Initial velocity v0 is 5Îu0/m.

GONÇALVES, KENKRE, AND BISHOP PHYSICAL REVIEW B70, 195415(2004)

195415-4



(electronic) damping may be neglected. Our results(both
analytical and numerical) confirm the existence of nonlinear
friction and show that it can arise without introducing any
explicit damping in the center of mass coordinate. Along
with recent studies such as those in Refs. 8, 9, and 13, they
open up a field for possible experimental work in order to
verify if such a phenomenon can be observed in the micro-
scopic domain.

We mention in passing some related studies in the litera-
ture. Tsekov and Ruckenstein15 have addressed the problem
of diffusion of molecules in solids. They consider arigid
dimer in the external potential of harmonic interacting par-
ticles representing the substrate. They find a Langevin equa-
tion for the dimer where the effective damping constant is a
periodic function of both the position of the dimer and the
ratio between the dimer and the lattice length. Our analysis
differs from theirs in that our substrate is fixed but our dimer
vibrates, the case being precisely the reverse in their system.

If both dynamics were present simultaneously, we expect
that both kinds of sliding friction would appear: normal vis-
cous friction derivable from substrate phonons,15 and the
nonlinear friction because of the internal damped dimer mo-
tion that we have analyzed. Such work is under way.
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