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Nonlinear friction of a damped dimer sliding on a periodic substrate
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The nonlinear sliding friction of a dimer over a substrate is studied within a one-dimensional model,
consisting of a vibrating dimeftwo masses connected by a spiyinigternally damped, sliding over a sinu-
soidal potential. Molecular dynamics simulations show that the friction force has an approxifhatepen-
dence if the velocity is sufficiently large, and that there is a striking periodic variation of the proportionality
coefficient with the ratio of the length of the dimer to the substrate wavelength. The nonlinear velocity
dependence was predicted earlier for a Langevin model of an adsorbed layer in the presence of strong external
force. We study it here in detalil in the transient regime and without external force. We obtain the dependence
on key parameter@nternal dissipation, dimer mass, substrate corrugation, and length, &t examine the
validity of the friction law. A semianalytical expression is suggested which confirms the numerical observations
in the high-velocity regime.
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I. INTRODUCTION answer the first two of these questions, we present here re-

In the last two decades much progress has been made syilts for a sliding dimer over a period_ic.substrate potential.
the fundamental understanding of the origin of frictioihe 10 focus on the nonlinear part of the friction, and at the same
significance of this progress is particularly clear if we com-time to improve the signal-to-noise ratio, we perform simu-
pare it with what had been done in the centuries after théations at zero temperature and without external dissipation:
friction laws were stated by Amonton and Coulomb, andfriction acts, in our model, only on the internal motion. We
elaborated upon by Leonardo da Viddilicroscopic experi- focus on the time behavior of this dimer in the absence of
ments on frictior? and subsequent theory and simulationexternal forces. We compare our results with the prediction
were started only in the last 15 yedr$.Of the work that  of Persson for the adsorbate with external force, and look for
remains to be done to achieve a coherent picture of this consimilarities and differences. We also suggest an analytical
plex phenomenon, an important aspect concerns nonline&xplanation supporting our results.
sliding friction. In his seminal papérPersson presented nu-
merical simulations in the nonlinear regime of an adsorbate
sliding over a periodic potential. He used a Langevin model
of interacting adlayer particles over a three-dimensional po- A single particle moving in a periodic potential provided
tential periodic in the plane. Such a model is reasonable foby the substrate would not exhibit friction as its energy
experiments of the kind performed by means of the quartavould be repeatedly transformed from potential to kinetic,
microbalancé. In addition to analyzing the model numeri- with no overall depletion. Some studies have addressed the
cally, Persson found analytically the dependence of the aceffective friction of such a particle in the presence of noise.
layer steady state velocity on the applied force and showe8uch noise can be externally impo&tt or produced effec-
that the nonlinear sliding friction becomes linear at high val-tively by the motion of a harmonic chain of atonsther
ues of the external force. Recently, Fusco and Fasbli@o than a fixed potentialas representing the substrétewe
ported numerical findings of the sliding friction of a dimer consider the system in the absence of noise. In the sliding
(two atoms attached by a springhen the dimer moves over object, let a second particle be attached to the first. A part of
a one-dimensional periodic potential and is additionally subits sliding energy can be converted into internal vibrational
jected to external dissipation. They considered different valenergy. It is trivial to see that the equations
ues of the dimer-substrate commensuration ratio.

Ten years separate the original finding of Persson and the Mk = + K= X, —a) + ZWUOSin(ZLXl)'
recent study of Fusco and Fasolino. Yet, there is no “experi- b
mental” confirmation of the nonlinear friction law, nor a
study of its validity, or its dependence on the substrate topol- B 2y . 27X
ogy. Several questions may be raised: What happens in the M =—k(X;=x;—a) + b ( b )
high velocity regime in the absence of the external force?

What is the dependence of the nonlinear friction on the shapaherex, , are the coordinates of the two particles of equal
of the substrate? Is the nonlinear friction of a dimer differentmassm, andk, a, b, u, are, respectively, the spring constant,
from that observed in an extended adsorbate? In order tequilibrium length of the dimer, wavelength of the substrate

Il. MODEL

1)

1098-0121/2004/109)/19541%5)/$22.50 70195415-1 ©2004 The American Physical Society



GONCALVES, KENKRE, AND BISHOP PHYSICAL REVIEW Br0, 195415(2004)

30,

15

20 ol
10]
10
Xy N
0 5
-10
oF 50
_2c . 1 n 1 n 1 " 1 " 1
0 20 40 60 80 100 0 1000 2000 3000
t

FIG. 2. Evolution of the center of mass velocity(t) in the

FIG. 1. Evolution of the center of mass coordinatein the - . . ; .
S . . presence of damping applied to the internal coordinate. Plotted is
absence of dissipation. Plottedxsvs timet from Eqgs.(1) for two : : f . . . f
v(t) in units of Vup/m vs timet in units of bym/u,. Parameters

different mmgl ve.I00|_t|es, below anc_;l aboye the upper chaps threshhere area/b=0.25, kt2/uy=1, andybym/us=4. Two insets show
old, respectively;x, is expressed in units o, t is in units of

7 2 Y — the detail of oscillations at times much smallleft lower insej and
bVm/ug, andvg is in unitsyup/m. In the present case=1.4b and : . o - .
- 5 larger (right upper insetthan the stopping time. Solid lines in the
k=2uq/b*. . . . .
inset show the numerical results while the dashed lines represent
our proposed friction law.

potential and half the amplitude of the potential, which lead
to coupledequations for the center of mass coordinatand %, = 277u°sin< 27TX+> S<27TX—>
the internal coordinat&_. The latter are defined as half the mb b b/’
sum and difference ok, ,, respectively. It is the presence
(and additionally, the nonlinearifyof the substrate potential . k Uy . [ 27X 27X,
that is responsible for the coupling between the otherwise %= 'E(ZX—'a) " mb S'”( b )COS( b )
independent coordinates andx_. Analytic solutions of the
coupled equations do not appear possible. The dynamics can — K )
be very complex depending on the initial energy, and nu- B
merical procedures become necessary. While dissipation removes chaos from the system, the
The “normal” behavior of the dimer includes oscillations coupling between coordinates makes it impossible to pro-
within potential barriers for low initial energy, and ballistic duce an analytical solution of E¢2). To proceed numeri-
motion for high initial energy but with a velocity periodically cally, we use the algorithm of Verlet modified to allow for
modulated by the substrate potential. As the initial energy i¢/€locity dependent forces. Thusxfis a generic coordinate,
increased, this oscillation becomes smaller compared to that iS @ time increment, and(t) is the acceleration corre-
dc component. For an intermediate narrow range of initiaSPonding to the forcesot depending on velocities, we use
energies, the evolution is unpredictable and exhibits chaos. 2x(1) - (1 = yAU2)x(t - Ab) + {(H AL
As an illustration of some of this behavior, we show in Fig. X(t+ At) = L+ A2 :
1 the center of mass evolution for two different initial veloci- Y
ties, below and above the upper chaos threshold, respec-
tively. The behavior in the intermediate region shows thredll. NUMERICAL RESULTS AND PHENOMENOLOGICAL
characteristics as a result of the interchange of energy be- LAW
tween translational and vibrational modes: forward move- Typical evolution of the center of mass velocity from

ment, backward movement, and temporarily no movemeng., jations of our model is in Fig. 2, and exhibits two dis-
represented by a plateau in the platoundt~40in Fig. D.  (inct features: The rate of decrease of the center of mass
However, .th|s last is an unstable situation, as the system Selocity rises sharply as time evolves; and the velocity ap-
conservative: the internal energy can be reconverted iNtBears to go to zergexcept for the persistent small-amplitude
translational energy allowing the dimer to slide again. This ispscillationg in finite time. Thus, we see that effective friction
repeated forever in the absence of dissipation. Therefore, thémerges from the conversion of the translational to internal
undamped dimer in a periodic potential is either trapped, omotion (which has an intrinsic sinkand that this friction is
executes a ballistic movement, or is in diffusive chaotic moonlinear. It has an inverse dependence on velocity, being
tion in the intermediate energy region. Such nonlinear dystronger at lower velocities. Indeed, it appears to obey ap-
namics of a dimer on a periodic substrate, without dissipaproximately the friction lawdv /dt=-7v"¢, with solution

tion, was thoroughly addressed recently by Fusco, Fasolino,

and Janssel® v(t) _ {1 (o= 1)77t:|a_}-l

3

To make the system more realistic, in the present paper ot (4)
we assume that thaternal modeis subjected to damping at 0
rate y. This results in the following equations for the coor- whereuv, is the initial velocity. Equatior4) predicts a stop-

dinatesx, _: ping timetg given by

Uo
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FIG. 3. Evidence for our proposed power law=3). Shown is FIG. 5. Internal coordinate=x_—a/2 vs timet. Note the rela-

the relation between the apparent stopping timand the initial  tvely small amplitude of the oscillation supporting thea/2 as-
velocity vo, for a/b=2 and different se_oi/ andk. VeIOC|ty and sumption;x is in units of_b, tl_me is in units ofbym/ug, and param-

the stopping time are given in units gfi,/m andbym/ug, respec-  ©ters are the same as in Fig. 2.

tively; vy is in units of y(uy/m)/b andk is in units of uy/b2 The

lines are a linear regression of the log-log relation given consisis large enough and the times are not too close to the stop-

tently by an exponer#=4, thusa=3. ping time. We will elaborate on its limitations below.
: vg"l ) IV. ANALYTICAL CALCULATION
S_ .
(a+1)n The internal coordinate_ has the natural frequenay,

We plot in Fig. 3 the velocity dependence of the numeri-=\2k/m. When scaled and translated through(x_/a/2
cally obtained apparent stopping time and interpret it in—l), the internal coordinate obeysee Eq(2)] the damped
terms of Eq.(5). The plot provides clear evidence that the driven oscillator equation
exponent in expressiof) is a= 3, with less than 2% error.

he coefficieny of this sliding fricti % V2 RUL ma
How does the coefficieny of this sliding friction depend —+ wl= sin| [ == |(1+¢)
on the topology and dynamics of the system? To answer this dt dt amb b
question, we vary the parametersb, uy, k, m, andvy, and
e ) ) ) o 27X, (1)
the initial velocity v, over wide regions. In fact it is only b . (7)

necessary to do this for the relevant dimensionless quantities

a/b, ka/HO_and yo\m/u,, and the initial dimensionless ve-  The complexity of this equation relative to that for a har-
locity vovm/uo. The striking results are in Fig. 4. In addition monic oscillator driven linearly thorough a sinusoidally vary-
to confirming that the coefficient of proportionality is di- ing forcing term arises from two factors that appear on the
rectly proportional toy,® and also proportional t6uy/m)?,  right hand side: the dependence of the sin term and the
but independent ok, we find an important result. The coef- generally nonsinusoidaldependence of the cos term. In Fig.
ficient » has a periodic dependence afb fitted excellently 5 we have shown the behavior of the internal coordinate in a
by a simple sinusoid. All these results may be combined intaypical case. We see there that the internal coordinate has a
the following phenomenological friction law we propose:  small amplitude of oscillation throughout the evolution. If
dv 7<Uo>2 . (wa> 1 we restric_t our attention _only to_such a cagenay be ne-
—= = | sir?| — - (6) glected with respect to 1 in the sin term above. Generally, we
b /v may write, withx,(0)=0 without loss of generality

Agreement of the predictions of our law with numerical 5 ¢
simulations is remarkably good provided the initial velocity 5< ”X*‘() S( f v(S)dS) 2 B cogwit),
I Osimlulations : (8)

dt~ 2\m

o o0sh i where the complex dependence of the center of mass ve-
3 locity has been resolved into Fourier components of frequen-
5 cies w; and coefficientsB;. With the notationA;=(2/a)
§ X (2mup/ mb)sin(wa/b)B;, we therefore study the linear

damped oscillator
L L 2 d
0% 0.5 a;b 15 2 % yd—f wiE= E Accod wit) (9)
I

FIG. 4. Periodic dependence of the friction coefficignon the ~ whose behavior is known from textbooks. The coordinate
ratio of the dimer length to substrate wavelength. Plotteggis  may be decomposed into componegteach of which sat-
units of y(up/m)? vs a/b. isfies, after transients have died down
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Ai 5
&M= cogwit - §), (10) [ .
V(05— o))+ ufy? T ™
where the lag factos equals tah = w;y/ (03— w?) for each I
Fourier component. Dissipation of energy from the center of st 2r — i
mass motion into the internal coordinates occurs at theRate 1'_ _ Z-(g;v" |
given by Iny(dx_/dt)?=2my(a/2)%S; (d&/dt)? whose aver- L |- k=10 .H T
age, since the square of the sinusoidal term contributes 1/2, o R T
IS o700 200 300 400 500
R=m (9>22 . — t
—Ma Y (02— 092+ 0Py FIG. 6. Comparison between the analytic prediction of our pro-
5 b 5 posed friction law 4(solid thin line without oscillationsand nu-
-m 27U i ma E Bl w; (11) merical simulations for the center of mass veloaityt) vs timet.
"™ "mb b /5 (0f- )P+ Parameters ara/b=0.5 andybym/u=1. Solid thick line and bro-

ken line are forkb?/uy equal to 0.02 and 10, respectively. Velocity
We will now restrict our analysis to situations and time is expressed in units ofus/m and time is in units ofbym/u.
domains in which we can replace theum by a single term Initial velocity vg is 5vup/m.
involving an average frequenay,, which may be weakly

dependent on time. We then have pression(4) and with two numerical simulations made with
2 [t two different values of the spring constdnseparated by a

cos(—f v(s)ds) =~ coqwyt), factor of 500. At the time scale of the plot, it is hard to see

b Jo the difference between the analytical prediction and the

simulation with the smaller of the twi, while for the larger
k the discrepancies between simulation and analytical results
are quite evident.

The origin of the periodic dependence of the friction co-
efficient on the ratio of the equilibrium dimer separation to

w, being related to the center of mass veloaity) through
w,=2mv(t)/b (the “washboard” frequengy Consider now
the case that the washboard frequengys much larger than
the natural frequencyy, and the damping rate. We can

then write the substrate wavelength, evident from Fig. 4 and from Eq.
a 27U \ 2 ir? ma\( 12 (13), should be clear from our analytic argument given at the
R=my mb /) S\ 0a) (12) " peginning of the present section. Physically, the importance

_ _ _ . of this commensurability of dimer and substrate lengths can
Equating 'ghe rate at which the internal r_noo!e gains energy tge understood as follows. Whenequals integral multiples
that at which the center of mass loses it, viz.mw2dv/dt),  of b, the two masses constituting the dimer feel exactly the

we get the equation for the center of mass velocity same substrate force when in equilibrium. The overall effect
do [ Uo\2 ma) 1 of this in-phase situation is that the internal motion is never
EZ_E<E) sin2<F)—3. (13 excited, and friction disappears. Analytically, this is also

v

clear from the sine term in E@13), which vanishes identi-
This is precisely the resulis) we proposed above on the cally for this case. On the other hand, wherequals semi-
basis of an empirical inspection of our numerical results.  integral multiples ofb, the two masses tend to be precisely
The analytical argument we have presented is valid undeput of phasécounterphasewhich is the most effective situ-
three assumptions. The first is that the amplitude of the ination to excite the internal motion, and gives rise to maxi-
ternal dimer coordinate always remains small relative to thénum friction. Analytically, this is represented by the sine
equilibrium value of the length of the dimdg<1). The term being equal to 1.
second is that the characteristic rate of variation of the center
of mass velocity, viz.(1/v)(dv/dt), is smaller than both the
natural frequency of the internal coordinaig, and the dis-
sipation rate,y. The third assumption is that the washboard Our general aim in the present paper has been the inves-
frequency w, which is proportional to the center of mass tigation of some puzzling features of atomic friction. Specifi-
velocity v is itself larger than the other characteristic fre- cally, we have pursued the dynamics of a model addressing
guencies, viz.wg andy. Of these three assumptions, the lastthe sliding friction of a dimer. The model is simple: a linear
is easiest to realize practically or understand physically. It ilamped oscillator sliding in a sinusoidal periodic potential.
valid provided we take the initial velocity to be sufficiently Yet, except for the limitation that it is restricted to a single
large and the time considered not too close to the stoppingpatial dimension, it has the necessary and sufficient ingre-
time. The specific values of the initial velocity required for dients to be an acceptable model for a real dimer or molecule
this validity are determined by the specific given values ofsettled in a controlled microscopic sliding experiment. For
the system parametess, and y. In order to study the appli- example, a molecule sliding along channels of a crystalline
cability of the assumptions, we present Fig. 6, where wewell-oriented substraté might exhibit the described behav-
compare the behavior of the dimer velocity according to exdor, provided that the temperature is so low that all external

V. CONCLUSIONS
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(electronig damping may be neglected. Our resulloth  If both dynamics were present simultaneously, we expect
analytical and numericaktonfirm the existence of nonlinear that both kinds of sliding friction would appear: normal vis-
friction and show that it can arise without introducing any cous friction derivable from substrate phondhsand the
explicit damping in the center of mass coordinate. Alongnonlinear friction because of the internal damped dimer mo-
with recent studies such as those in Refs. 8, 9, and 13, thejon that we have analyzed. Such work is under way.

open up a field for possible experimental work in order to

verlf)_/ if such_ a phenomenon can be observed in the micro- ACKNOWLEDGMENTS

scopic domain.
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