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Abstract

Simple random walk considerations are used to interpret rodent population data collected in
Hantavirus-related investigations in Panama regarding the short-tailed cane @s#nntomys
brevicauda Thediffusion constant of mice is evaluated to be of the order of (and larger than) 200
meters squared per day. The investigation also shows that the rodent mean square displacement
saturates in time, indicating the existence of a spatial scale which could, in principle, be the home
range of the rodents. This home range is concluded to be of the order of 70 meters. Theoretical
analysis is provided for interpreting animal movement data in terms of an interplay of the home
ranges, the diffsion constant, and the size of the grid used to monitor the movement. The study gives
impetus to a substantial modification of existifgeory of the spread of the Hantavirus epidemic
which has been based on simple diffusive motad the iodents, and additionally emphasizes the
importance for developing more accurate tegoess for the measurement of rodent movement.
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1. Introduction

The Hantavirus epidemic is of great concern to human health in many regions of
the world (Yates ¢ al., 2002 Mills et al., 1999 Pamenter et al., 1999 The discovery of
Hantavirus in the New Wodl took place after an outbreak of a severe disease in the
region of the Four Corners in the North American Southwest, in 1993. The agent,
Hantavius Sin Nombre, is carried mainly by the extremely common deer mouse,
Peromysas maniculatus(Nichol et al., 1993Childs & al., 1994. Since the discovery,
an enormous effort has been devoted to understanding the ecology and epidemiology
of the virus—-mouse association, with the ultimate goal being prediction of human
risk (Mills et al., 1999 Pamenter et al., 1998 Numerous species of the virus are known
in the Americas, each one of them almost esclely associated with a single rodent
reservoir Schmaljohn and Hjelle, 1997 Human disease caused by these pathogens can
rangefrom mild to very severe, with a mortality rate in some cases approaching 50%.

A theory for the spread of the Hantavirus was constructed a few years ago by two of
the presenauthors Abramson and Kenkre, 20D2nd shown to lead tarally to spatio-
temporal patterns such as the observed refulates & al., 2002 and the goradic dis-
appearance and appearance of the epideMitis(et al., 1999 Pamenter et al., 1999
That theory will be referred to in the rest of the paper as AK. Seasonal, as
well as extraordinary variations in degraphic and environmental conditions are
included in the AK model through spatierhporal dependence of several param-
eters, such as the carrying capacity. Témergence of traveling waves of infec-
tion (Abramson et al., 2003 the inwestigation of fluctuations Aguirre et al., 2008
external changes in environmental effectBglard et al., 200% and other fea-
tures Kenkre, 2003 Abramson, 2003Kenkre, 2004 Buceta et al., 2004have #so been
studied. There are additional factors, not yet analyzed theoretically, which may be of im-
portance in the dynamics of the virus. For example, human activity such as changes in
agricultural practice may alter habitats and drive the rodent population into new habitats
not previously occupied by them. While many theoretical issues regarding the AK devel-
opment have been, and are being, explored quite intensely, the major problem of obtaining
the values oflte parameters inherent in the theory has remained neglected as a result of
paucity of available data. Needless to say, the solution of this problem is crucial to the
guantitative description of the spread of the epidemic. The purpose of the present paper is
such extraction of the essertimrameters necessary in the degtion of the spread of the
Hantavrus.

The AK model @Abramson and Kenkre, 2002bramson et al., 20Q3is bagd on a
fundamental set of biological features that characterize the transmission of Hantavirus
among rodent populations, and involves five parameters: the birttbratehe rodents
(mice), their death rate, the ewironmental parametef, the ontagion ratea, and the
diffusion coefficientD. In terms of these, the mice populatiolts (susceptite) and M;
(infected) obey

oM Ms(Ms + M) 2
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All the parameters except are considered to be independent of tieand space.

The measurement of the birth and death rdieg presents no special challenge.
The environmental parametéf is sometimes measured from food and vegetation
measurements, and also often obtained from aerial photographs of the landscape. Its
variation in time and space can be well characterized although its absolute values are
difficult to obtain. The encounter infection rateis notoriously hard to measure from
observations of individual mouse—mouse interacti@uttén et al., 2002. At this stage of
observational technique, we must assume that it is a floating parameter.

The last of the five parameters, the diffusion consiyis crucal to the AK description
since the assumed meatism for the spread of the epidemic is the diffusion (movement)
of infected mice over the terirafollowed by the transmission of infection to susceptible
mice. In principle, it appears straightforward to meadbifeom records of mice movement
in a mark-recapture experiment, as was don@®bgskainen (2004in a recent study on
the dispersal of butterflies in a heterogeneous habitat. The investigation reported in the
present paper began as an attempt to extBadiredly in that manner. We will see that
examiration of the data has indeed allowed us to obtain valued diut also &d us to
a number of important conclusions about thartsmission of Hantavirus among rodent
populations, and has suggested substantial changes to be introduced into the theory of the
spread of Hantavirus.

2. Thedata set: Zygodontomys brevicauda in Panama

At the begnning of 2000, human cases (more than 20 in the first cluster) of
Hantavirus Pulmonary Syndrome (HPS) were recognized from the Azuero Peninsula,
Panama. 8llowing the outbreak, it was diswered that the pigmy rice radligoryzomys
fulvescensnd the short-tailed cane mougggodontomys brevicaudsarbored two novel
hantaviruses, Choclo virus (responsible for the HPS cases), and Calabazo virus (not known
to cause human disease) respectiveiyn€¢ent et al., 2000 The data set we have selected
in this study was obtained as the result of arkarecapture obsertian performed in the
Azuero Peninsula, in Tonosi (Los Santos), Panama, from June 27 to November 20, 2003.
The observation corresponds to the rainy season in the region, and following several years
of relative draught. During these years, clinical cases of HPS were rare (after being more
frequent in 1999-2001) and ragtedensities were probably relatively low.

Measurements were made on several species of rodents, of which we choose for the
purposes of the present papérbrevicauda host of Hantavirus Calabazo. This choice
was made becaus&. brevicaudawas the most abundant species in the field study. A
summary of the characteristics of the populations is present&dbie 1 Thedata réevant
to the analysis of the movement consist of the position and time of capture of those mice
that are captured at least twice, thus allogvifor the calculation of their displacements
from one location to another. The measurements were made with a square arrayrof 7
Sherman traps, separated 10 m each. Eachuriegsession lasted 3 days, with a time of
recurrence to the same site of about one month. The number of trapping grids used in the
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Table 1
Sunmay of the mark-recapture data &f brevicauda
J SA A Total

Captured only once:
F 7 13 98 118
M 8 18 79 105
Total 15 3 177 223
Recaptured at least once:
F 2 2 71 75
M 0 16 97 113
Total 2 18 168 188
Probability of recapture:
F 0.22 013 0.42
M 0.00 047 0.55
Total 0.13 037 0.49

A total of 846 captures, corresponding to 411 differentrets, were obtained. Of them, 188 were captured at

least twice, and at most 10 times. The probability of recapture depends on sex and age group, as shown. It suggests
an increase of the probability of recapuvith age, independently supported by the probability of recapture as a
function of weight (not shown). J: juveniles, S&b-adults, A: adults, F: females, M: males.

study was 24, in 4 different sites. Each grid was set up across the edge between forest and
pastures$uzan et al., 200/ For our analysis given below, all grids have been rotated such
that the edgeuns along they direction.

3. Themovement of Z. brevicauda

A fewanimals were captured a sufficient number of times (about 10), during a period of
months, as to allow us to form a useful picture of the mouse walks. Unfortunately, there are
only five of these mice. The limited number neskit impossible to carry out any statistical
analysis of the properties of the walks.

Despite this drawback, we were able to geed with the analysis because the data set
contains hundreds of recapture events, correspondidiffésentmice, each one providing
us with a displacement at a certain time scaleese time scales are 1 and 2 days (if the
recapture occurs during the same session, that lasts three days); about 1 month (if the
recapture occurs at the next session); and about 2 months (at the second next session),
3 months, and 4 months, respectively. At progressively longer time scales there are,
certainly, less recapture everltat there are a sufficient number of them for sensible results
to beobtained up to the 3-month scale. The data are showginl, for the x-component
of the 2-dimensional displacements of thécen Each point in the graph represents a
displacementx taking place during an intervalt. Each displacement corresponds to the
movement of a single mouse, but differetisplacements may or may not correspond to
the same animal. We consider these displaceéseshour elementary events. Furthermore,
we specifically assume them to be statistically independent. There are repeated events in
the set, namely disptements with the sam®x and At, a fact not represented ifig. 1
In the plot, it can be observed that, besides thaent 2-day intervals, the data are scattered
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Fig. 1. Displacements of the recaptured mice, projected along ttikection which is the direction into and out

of the forest relative to the pastures in the landscape. Each point corresponds to a displacement of one of the 411
mice that were captured more than once. Some mice were captured more than twice, thus contributing with more
than one point to this set.

in “clouds” around 1, 2, 3 and 4 months. The reason for this is twofold. First, each session
consists of 3 consecutive days of capture; tfaee the interval between two recaptures in
different sessions is not a constant number of days. Second, variations due to the logistics
of field work result in the time between sessions not being precisely 30 days.

On each time scale, the set of available dispiments is taken to represent a statistical
ensemble, i.e., a population of ideal mice with certain statistical properties. Also, the
displacements measured on each time scale gmnel to a progressively coarser graining
of the actual mice walks, containing an indeterminate (but presumably large) number of
steps aleady on the 1-day scale.

Using available data on each time scale, we construct mouse walks by randomly
shuffling the displacements. These walks resgné instances of possible walks, on that
time sale, with exactly the same statistical properties as a hypothetical “representative
mouse”. We construct various such walks and perform ensemble averages to obtain the
mean square displacement as a function of time. For example, on the time scale of 1 day,
20 instances of the walk produce the result showrign 2. Diffusive behavior is inferred
from the clearly linear rise of the mean squalisplacement. On longer time scales the
same aalysis produces smaller diffusion coefficients. However, application of the method
is not reliable on these longer scales becatisibes not permit a correct evaluation of
errors.

The above considerations clarify the underlying diffusive nature of mice motion. A
direct analysis of the probability distribution functid®(Ax) is possible, also on each
time scale.P(AX) is a bell-shaped distribution, with wdl-defined variance that can be
used to characterize the evolution of the megnare displacement of the representative
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Fig. 2. Square of the displacement as a function of time, on the time scale of 1 day, for 20 artificial “mouse walks”
based on the recorded displacements. The heavy line is an ensemble average.
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Fig. 3. Mean square displacement as a function of time, using the different time scales available from the data of
Fig. 1 The two curves correspond to the two directions in space.

mouse as a function of time. The result of this analysis iBi 3, where we show the

mean square displacements in bothxtend they directions. Unlike in a simple diffusive
process, the observed mean square displacement is observed to saturate to a value near
400 n?. The satwation value is different fotAx2) and for(Ay?), indicating an anisotropy

in the system. We have already mentionedwaihat each trapping grid contains an edge
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between forest and pasas, manly along they direction. This is surely responsible for
the anisotropy.

4. Movement in confined spaces. Rodent homerangesand grid sizes

The saturation of the mean square displagptnclear from the observations discussed
above, implies the existence of a spatial scale in the rodent system. One obvious possibility
is that the saturation is a manifestation b&tconfined motion of the rodents, i.e., the
exigence d home rangesHurt, 1943. In order to treat the problem quantitatively, we first
present a simple calculation of the effectooihfinement on the meanuare displacement
of a random walker.

4.1. Effect of confinement dr?)

There are several ways one might model the effect of confinement on the motion
of rodents. One is to treat the motion as obeying, not a diffusion equation, but
a Fokker—Planck equation in an attractive potentiluperman and Kenkre, 2004A
simpler way, which we adopt here, is to consider the motion as occurring via simple
diffusion but confined to a box whose size represents the home range. Restricting the
analysis to 1-dimension for simplicity, we solve the diffusion equation for the probability
per unit lengthP(x, t) of finding the mouse at position and timet inside a bounded
domain of length_. Taking into account the symmetry of the problem, the general solution
can be written a®(x,t) = Ag+ > A cogax]e+°Dt, By imposng the condition that a
mouse cannot escape from the home range (zero flux boundary condition), the allowed
coefficients can be calculated and the solution written as

oo 2n7 X _ (2n)22Dt
PO D=+ nz ncos[ }e Z (3)
wherein
2 L2 2n X
An = —/ dx cos[ d } P(x, 0). 4)
L/ L

With the initial condition that the mouse is within a lengtltentered around the origin of
the box, specifically

|1/ IX| < /2
P(X,0) = {0 IX| > /2, ®)

the evolution at all times can be written as

+00 SiN cos 2N X 2.2
P(X’t)Z%J“iZ (o) oo )e*(ziizm. ©)

oTm n—1 n




1142 L. Giuggioli et al. / Bulletin of Mathematical Biology 67 (2005) 1135-1149

The initial condition b) redices to aP (X, O) = §(x) in the limito — 0. The calculation
of the mean square displaceméxt) = f L2 dxx?P(x, t) gives

2
2 = = Z

We see thatx?) ~ «?/12+ 2Dt fort — 0. We alsosee thatx?) saturates ta.2/12 for

t - +oo. If P(x,0) = §(x), themouse will move initially as if no home range existed.
However, its diffusive motion will be limitedni extent by lhe presence of the home range
and (x2) will eventually saturate. The 1-dimensional calculation captures the essential
features. The 2-dimensional extension, appropriate to mouse movement on the terrain, is
straightforward to obtain becau$¥x, y, t) is given by the product of two functions of the
form (6), one for thex-planewith Dy and Ly and the other for thg-planewith Dy and

Ly. Allowing for the fact that differences inein could be reflected in the differences

in Dx and Dy (given that the traps are laid out sgstatically relative to ‘edges’ in the
landscape between forests and pasturesyiwea usable expression for the average mean
square displacement in 2-dimensions which b&nused directly for the interpretation of
theobservations.

X (- 1)”+1S|n(””"‘) _ n?x20t
e L2

(7)

L2 4+ L2 1 I (_1)n+1
2 2y _ X 7Y o N
0 +yh) = —— |1 MSZ =

(2027 2Dyt

nra) - @wiriod nra\ —— 2
x { Lysin e % +Lysin[—)e Y
Ly Ly
(8)

Application of this analys to the nouse data is straightforward. The short-time part
of the mean square displacement gives the diffusion constant, averaged over the two
directions, to be 20& 50 n?/d. The saturation value apgrs to imply that the home
rangeL equals about 70 m. While these initial coreidtions suggest that the Panama data
allow us to confirm the existence of rodent home ranges, as well as to measure their extent,
careful observation introduces a note of caution: we notice that the derived value of the
home range is of the order of the size of the measuremen@&sd60 m. Could sampling
from a limited domain in space lead to saturation and mislead one into drawing incorrect
conclusions about the home range? To amsis question we carry out the following
analysis.

4.2. Effect of limited spatial observations ¢rf)

Consider the motion of a random walker in unbounded space (no home ranges) but let
the mean square displacement be calculated from observatiotimiiteal part of space of
size G placed symmetrically around the origin for simplicity. We obviously have

[Géfz dx x2P(x, t)
G/2 9

(x%) =
JZ&20% P(X, 1)




L. Giuggioli et al. / Bulletin of Mathematical Biology 67 (2005) 1135-1149 1143

where the probabilityP(x, t) is given by he propagator of the diffusion equation in
unboundedspace:

x2

PX.t) = ——— (10)
X, t) = .
47 Dt
Substitution gives
_ G%
(x?) =2Dt | 1— Ge ror S (11)

At short times(xz) ~ 2Dt while at long times it saturates to the val®#/12. The
2-dimensional result is trivially obtained as a generalizatiori@f.(

Note that the behavior of a system without home ranges but with a finite window
of observation is qualitatively different from that of a system with home ranges and an
infinitely large window. The mean square displacement in the former (&3). fas quite
a different time dependence from the latter (Ef){since the error function expressions
differ considerably from exponentials. It is easy to see that in both cases the mean square
displacement starts out at short times 8 2nd saturates to a constant at long times. The
saturation is taG2/12 in the first case and th2/12 in the second. There is thus potential
for confusion. One could mistakenly interpret what is actually the measurement grid size
G to be the odent home rangk.

Combination of the two elements discudsbove, he home range effect and the grid
sizeeffect, is straightforward to analyze. Caser the situation in which a mouse is moving
randomly inside a home range of widthbut isobserved only inside a region of wid®,
both concentric for implicity. If the grid is larger than the home rang& > L), the
ewlution of the mean square displacemeneiactly given by the previous resulf) In
the other casdG < L), the ewlution is

G2
2
X%) = —
(x%) 12
o . 5 _ 2n272Dt
¢+ MGZI_”4 3 sin(De) {zﬂ{cos(nnsnc) +sm(nn{)[z—2£2* n_24“e L2
n=1

.(12)

oL K22 sin( M%) sin(n¢)
Ttz 2T w
n=1

_ (2n)2x2pt
e L2

wherein; = G/L. Eq. (12) redwces to Eq. 7) whenz = 1. It can be shown thdk?) goes
asa?/12+ 2Dt fort — 0 and sattates toL?/12 fort — +oc. In Fig. 4we compare
Egs. (7), (11) and (L2) for an initially localized conditiorP(x, 0) = §(x). Despte the fact
that all of the three curves (witG < L) show he same linear behavior at short times and
reach the same saturation value, they diffengiderably at interediate times. A fourth
curve (dashed, lowermost in the group) for whih> L is also shown inlte same graph.

An important step in the interpretation of saturation data is the verification of the
sensitivity of the theoretical prediction to the initial position of the mice, as well as to
the position of the home ranges with respect to the gridhppendix Awe provice further
details on the calculation of the mean squasgdcement, relevant to the dependence on



1144 L. Giuggioli et al. / Bulletin of Mathematical Biology 67 (2005) 1135-1149

<x?>/(G*/12)

0.3
Dt/G?

Fig. 4. Mean square displacement in unitsG#/12 as a function of time in units @2,/ D for different values

of the ratioG/L, i.e., the rdio of the measuring grid divided by the width of the home range. The dashed, solid,
dash—dotted and dotted lines correspond, respectivel@/to = 1.43, 1, 0.7, 0. WherG > L, (x?) is seen

to saturate to the lower valubz/lZ, whereas for all othef(G < L) cases, it saturates @2/12. The time
dependence differs qualitatively for the various cases. The difference might be discernible—in principle—with
morerefined neasurements.

the distribution of initial locations of the mice. To assess the combined effect, we have
done a numerical experiment in which we maassimulated mice displacements. Each
mouse is supposed to occupy uniformly its own home range, and all the home ranges are
uniformly distributed in space. We limit thealculation of the mean square displacement

to a window of siz&G, thus simulating the conditions of the measurement in the field. The
resultis shown inFig. 5 where the normalized mean square displacement is plotted as a
function of the normalized home range siz¢G. The avdable data allev us to onclude

that the homa range ofZ. brevicaudain Panama (avaged in the two directions) is 70 m,

with asymmetric error bounds from 50 to 120 m.

5. Discussion

Extraction of quantitative information concerning the parameters in the Abramson—
Kenkre theory Abramson and Kenkre, 20D2f Hantavirus spread was the initial task
undertaken in the present investigation. This was prompted by the success of that theory in
reproducing qualitatively observed features saslhe sporadic disapprance of infection
during time periods of low carigg capacity, and the existence of refugia where infection
persists and from where it propagates in the form of waves when conditions become
favorable br such propagation. The key to the AK description of these processes was a
transcritical bifurcation pricted by the theory and controlled by the carrying capacity.
Crucial to quantitative application of the theory is the diffusion constant of the rodents,
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Fig. 5. Mean square displacement in units@#/6 as a finction of the ratio of the home range size to the
grid size,L/G. The curve is the result of a simulation of 105 steps for each value/&. The arow shows

the average (in both directionsandy) mean square displacement observed in the measurement, from the data
shown inFig. 3, and the mferred value of the home range/G = 1.16). The grey lines show the error bounds.
The ddted lines show the analytic result derived Appendix A vdid for home ranges concentric with the
grid.

and the first aim of the present investigation was to extract this diffusion constant from
movement observations collected #irbrevicaudan the peninsula de Azuero in Panama

in a 5month period in 2003. While logistic growth which is also part of the theory of
Ref.Abramson and Kenkre (200B)generally considered wedktablished, both from field

and laboratory studiesMurray, 1993, equally strong justification for assuming diffusive
trangort for rodent movement is not available. The goal of extracting the diffusion
constant has been met. The result partictitathe species and dation considered is

D = 200+ 50 n? per day.

During the process of this extraction, we encountered a spatial scale in the rodent system
which oould be representative of the home range of the mice. Preliminary investigations
showed tlat the observed spatial scale could be reflecting the size of the measuring grid
instead of a characteristic of the rodent syst Since accuracy of interpretation will be
considerably increased by having multiple \edwof the grid size, our analysis underscores
the importance for additional observations to be undertaken with grids of varying size.
Motivated by this idea, we carried out further developments of the theory which resulted
in the simulation curve shown iRig. 5. The nean value of the home range for the two
directions can be read off from the plot to bg = 60 m andLy = 90 m.

Because our prescription for extracting th&asion constant relies on the initial time
ewlution of the mean square displacemenheatthan its saturation value, we have been
successful in olsiining a usable estimate of the diffusion constant. However, even that
evaludion suffes from the fact that reconstruction of mouse walks from observations is
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diffi cult because multiple measurements for indidd mice are extremely rare. Therefore,

we suggest strongly that systematic measurements of rodent movement be undertaken in
other ways such as radio telemetry to confamd sharpen the estimates of the diffusion
constant we have obtained in the present analysis. Elsewhere we will present our separate
analysis Abramson et al., submitted for publicatjoof mice movementatatakenfrom

web measurement®é&menter et al., 2003

The present analysis has pointed to the importance of the concept of home
ranges, which have been known and discussed in many places in the literature earlier
(Burt, 1943 Anderson, 1982Ford, 1979. They would generally be reflected in animal
movement measurements in the way we hdgtdled in our calculations in the present
paper and could additionally be of crucial importance in the theory of the spread of
epidemics. While they do not appear in the AK description (the tacit assumption in
that formalism being that they are larger than other lengths of interest), we have now
developed Kenkre et al., 200% a series of models to treat them explicitly. The basic
idea in our new theory is to consider the dynamics of two types of mice, stationary and
itinerant (and susceptible and infected in each category). The stationary mice are the
adults that move within their home ranges and do not stray far from the burrow. The
itinerant mice are the sub-adults that must leave to find their own home ranges. Our studies
employ a combination of nonlinear analysis and simulations. The results will be presented
elsewhere.
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Appendix A. Dependence of (x?) on distribution of initial location of rodentswithin
thegrid

The mean square displacement obviously depends on the initial location of thexgnice,
Let us consider the case of infinite home range, but fi@if@nddetermine the effect on
(12) of thedistribution P (xo) of initial locations of the mice. We thus evalugte — xo)2)
and calculate its average, denoted by an additi¢naj, with respect to the distribution
P(xo) of the initial positions through((x — xg)3)) = [%72 dXoP (X0) (X — X0)2).
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Proceeding as in Eqly), we have

G/2
({((x = X0)?)) = 2Dt — 2Dt/ dxoP (Xo)
-GJ2
S )2 S _xo)?
(§+x)e B 1 (§—w)e
G

G
Z+X%o 2 —X0
7 Dt [ erf<m> + erf< 4Dt)}

S xo)? S _y)?
Dt [G/2 e ( 24Dt0> —e ( 24Dt0>
+4 7 / dxoP (Xg)Xo S S
~G/2 S 1xo €%
erf<m> + erf(m)

(A.1)

This reduces to Eq1@) whenP(xp) = §(Xp). The evolution at short times is found to be
independent P (xo):

tIimo(((x — X0)?)) ~ 2Dt, (A.2)
while the saturationurns out to depend oR(Xg) and is given by

G/2
lim (X — x0)%)) = G?/12+ f / dxoP (X0)X3. (A.3)
t——+o0 —-G/2
Notice that for a uniform initial distributiorP(xo) = 1/G, the irtegralequalsG?/12,
and the saturation value 82/6. This value is twice that obtained for the case of initial
placement of the mice at the center of the grid. We see fi8) (thatits right hand side
lies always betwee2/12 andG2/3 depending on the initial distribution.

The time-dependent evolution ¢fix — xp)?)) can also be determined when the home
range is not ifinite. If Xo is not the center fothe home rangeP(x,t) is no longer
symmetric with respect to the origin, and the series solutiorPfor, t) now contains sine
(in addition to cosine) functions:

+o0 cos(””—f’“’) sin (%) cos(znfx> 2ot
e L2

1
PXo(Xv t) =—+ E n

L n=1

4 +o0 sin (7(2”’&)”"0) sin ((2”55)’“"> sin<(2”_|_1)”x> 12201
Tl e . (A4)

an = 2n—-1

Here the initial probability is

e X%l <a/2
P, 0) = {0 X — Xo| > a/2. (A-5)

We conthue to consider the home range and griddow to be concentric for simplicity.
The calculation follows the steps shown in earlier cases and yieldg,(for- xg)?)), the
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expression:

G/2 G/2
/ dxoP(xo)x0 + — f dxoP (X0)

6L X nt2xo\ . /Nra
X C+m;COS( )SIH(T>

2mf ——=—— +sin(nz¢) ﬁ; - e 2
96 x &2 Sin((Zn—IZ_L)nxo> sin((zngﬁ)”“)
(22 o (2n—1)?
B o (2n-1
@n—1me\ 28 (%) o122t
x | ¢ cos - = L2
< 2 > T (2n-1)
. -1
nm2Xg
oL i cos( )sm( LY SINNTE)  an2e2or
2 e 2 . A.6
Nt n2=:1 n2 (A.6)

The time dependence of EGA.6) at short and long times can be shown to tend to
that given by Eqgs. A.2) and A.3), respectively, for the case of free diffusion. In the case
L < G, the reslt is simply Eq. @A.6) with the parametes set jual to 1 ands set gjual
to L. In such acase the saturation value is given by an expression similar toAEg). ifut
with L replacingG everywhere.
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