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Abstract

Calculations in the theory of the spread of epidemics are described with particular focus on
the estimation of motion parameters describing rodents that are the carriers of the Hantavirus
epidemic. The data considered are of the “mark-recapture” kind, ie., those collected by
capturing, tagging and recapturing the animals in a prescribed finite region of space. The
theoretical tool used is the Fokker—Planck equation, its characteristic quantities being the
diffusion constant which describes the motion of the rodents, and the attractive potential
which addresses their tendency to live near their burrows. The measurements are addressed
through simple analytical calculations of the mean squared displacement of the animals
relevant to the specific probing window in space corresponding to the trapping region. A
Fourier prescription is provided to extract the home range of the animals from the
observations. Applications of the theory to rodent movement in Panama and New Mexico are
mentioned and several on-going generalizations of current models of Hantavirus epidemic

. spread are introduced.
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1. Imtroduction

The study of the spread of epidemics is important from multiple points of view.
Health concerns constitute an obvious reason for carrying out such studies. A
general understanding of spatially resolved interacting systems on a macroscopic
scale is another. Among the epidemics we have studied, the Hantavirus appears
especially convenient for starting one’s investigations into the subject because of its
simplicity from the conceptual viewpoint. We refer the reader to [1-6] for details and
state here only the following essential features of Hantavirus which shape the
modeling activity.

The Hantavirus infection is carried by mice that move from location to location,
and is transmitted to other mice through what are probably aggressive encounters.
The mice do not die, nor are otherwise impaired, from contraction of the virus.
There is no “vertical transmission™ of the disease, i.e., there are no mice born
infected. Humans get the virus from the mice but have no feedback effects on the
mice in the infection process. A simple model which can be constructed from these
four features to describe the time evolution of the mice populations A (susceptible)
and M; (infected) is
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For the sake of simplicity, all parameters except K are considered to be independent
of time ¢ and space x, and detailed considerations such as those arising from
gender and age of the animals are neglected. The meaning of the parameters
will be explained below. This simple model may be regarded from the ecological
viewpoint as a so-called SI model extended to include spatial resolution and diffu-
sive transport, and from the mathematical point of view as a system obeying the
Fisher equation [7] with internal states representing infection or its absence,
respectively. While near-trivial to conceive, this model has had considerable success
in the short time since it was proposed for the Hantavirus [3]. 1t has led to quali-
tative and semi-quantitative success in explaining observations such as spatio-
temporal patterns in the epidemics. These patterns are associated with correlations
between periods of precipitation and epidemic outbreaks, and with the spatial
location of refugia-regions of the landscape in which infection persists during
off-periods of the epidemic [3,5]. Other applications of the model include the
detailed understanding and control of traveling waves of infection [4], fluctua-
tions arising from the finitencss of the numbers and discreteness of the population of
the rodents [8,9], environmental effects [10}, curious switching effects that have
been predicted to occur [11], and extensions to unrelated systems such as bacteria
in Petri dishes [12,13]. This success of, and explosion of interest in, the so-called
AK model represented by Eg. (1), naturally suggests that one should devise
practical prescriptions for the extraction of the parameters constituting the



V.M. Kenkre / Physica A 356 (2005) 121-126 123

model from measurements in the field. This is the subject of the analysis in the next
section.

2. Extraction of D and the interplay of length scales

The importance of the quantitative extraction of the parameters in (1), followed, if
necessary, by generalizations of the model to incorporate additional structure
inherent in the animal dynamics, is clear from the above discussion. Let us focus here
on the former, i.¢., the process of the extraction of the parameters. The parameters
may be listed as a,b,¢, K and D, It turns out that observational collection of data
concerning the aggression rate a, through which infection is thought to be
transmitted during mouse—mouse encounters, is so difficult that, at least at the
present moment, it must be considered an adjustable parameter. The mouse birth
rate b and the death rate ¢ are obtained from field observations without too much
trouble, although there are several subtleties involved that we do not describe here
for reasons of space. With some effort, reasonable estimates of the environment
resource parameter K(x, £} as a function of location and time can be obtained by
counting food (such as nuts and water) available to the mice in the different
locations, as well as by acquiring aerial photographs of the vegetation cover.
Relative, rather than absolute, quantification of K is possible in this way. In some
ways the most important parameter in the list given above is the mouse diffusion
constant D since the assumed mechanism for the spread of the epidemic is the
diffusion (movement) of infected mice over the terrain followed by the transmission
of infection to susceptible mice. If one makes the simple assumption that mouse
movement is a random walk, it appears straightforward to measure D from records
of the movement through the use of the well-known proportionality of the mean
squared displacement (msd) to D¢, Careful examination of extensive mark-recapture
data for mice in Panama and New Mexico lead one to deduce D directly in this
manner [14,15]. However, the mouse msd, which grows lincarly with ¢ for short
times, is found to saturate at large times. One way of explaining this (perhaps)
surprising appearance of a length scale in the random movements of the mice is to
ascribe it to the fact that animals typically move near fixed locations (burrows) for
reasons of food and security [16-18). However, there is another, quite prosaic,
explanation: that the saturation could be arising merely from the fact that mark-
recapture observations employ a limited region of space where the traps are laid out.
It is possible to show analytically [14] that either of these factors could independently
iead to the saturation of the mean squared displacement. It is crucial, therefore, to
investigate deeper into the interplay of these two length scales.

3. Disentangling the length scales via a Fourier prescription

To disentangle these two sources of the observed saturation is an important
undertaking, Let us begin by assuming that the movement of each mouse follows a
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Fokker-Planck equation for the mouse probability distribution #(x, 1)
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wherein U(x), the potential under the action of which the animal is forced to roam,
describes the reduced randomness of the walk associated with the tendency to stay
near the burrow. A pure random walk, as in a simple diffusive process in the AK
model (1), has U(x) = 0. When U(x) #0 we will identify its characteristic length with
the home range of the animal which we will denote by L. We restrict our analysis
here to one dimension for simplicity.

It is clear that msd saturation may arise from the appearance of the finite
length L associated with U(x), the home range. But it may also arise from the finite
“grid length” G over which the mice are captured (at positions that we will
call xp) and recaptured (at positions that we will call x). Let us also keep in mind
that the observables must be calculated for multiple mice that have their
home burrows located at multiple positions x,. If the density of these burrow
locations is p(x.), the combined expression for the saturation value of the msd,
denoted by 4xZ, | is
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In writing (3), advantage has been taken of the steady-state solution of the
Fokker-Planck equation, well-known [19] in statistical mechanics to be the
appropriately normalized exponential of the potential U(x — x.). By reexpressing
the quantities in the right-hand side of (3) in terms of Fourier transforms and
exploiting the relation between moments in real space and derivatives in reciprocal
space, the right-hand side of (3) can be recast in the form of convolution integrals in
reciprocal space. If the distribution of the burrew locations, p(x.), is taken to be
uniform over the terrain, the convolutions disappear and (3) yields the compact
formula
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This result expresses the msd as a ratio of two single integrals over reciprocal
space. Each integrand is a product of two conceptually separated factors: a probe
Sfunction determined solely by the grid size & (independently of mice characteristics)
and a mouse motion quantity determined solely by the mouse motion characteristics
U(x) and D (independent of the probe, i.e., the grid size). In (4), k spans the space
reciprocal to real space in which the mouse moves, and P(k) is the Fourier trans-
form of exp[—U(x)/D]. The probe function is (1 — cos Gk)/k*. The mouse motion
factor is the square of the Fourier transform of exp[—U(x)/D] in the denomi-
nator, and its second k-derivative in the numerator, The home range L is naturally
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defined as
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It can be obtained from the saturation value of the observed mean squared
displacement by combining its definition with (4) and using the fact that G, the size
of the trap region, is known,

The practical prescription provided by this analysis works as follows. For specific
assumed forms of the confining potential U(x), the sigmoidal curve of the
dependence of the saturation value of the mean squared displacement AxZ
(expressed in terms of the square of the known grid size) is plotted against the
ratio { = L/G from the analytic Fourier expression (4). The observed value of the
ordinate allows one to read off the value of { = L/ as shown. Since G is known, L
is obtained directly. The disentangling of the two length scales is thus complete.

Giuggioli et al. [14] and Abramson et al. [15] have deduced explicit values of the
home ranges of two different kind of mice in Panama and New Mexico respectively,
through the application of this technique. The Fourier prescription provided here is
a reformulation of the method underlying the analysis in Refs. [14,15]. The reader is
referred to those papers for details and for the extracted values of the home range. A
detailed theory of home range estimation may be found in the forthcoming paper by
Giuggioli et al. [20].

4. Concluding remarks

We have described above a theoretical framework for the extraction of the motion
parameters of mice moving diffusively within confining potentials, with focus on the
problem of the determination of the home range size, and have provided a Fourier
prescription to be used for arbitrary potentials. The prescription can be shown to be
equivalent to a different procedure given by Giuggioli et al. [20]. An application of
this prescription results in reasonable realistic extracted valucs of the home range size
L for different type of mice in different environments: e.g., 60-90 m for Zygodontomys
brevicauda in Panama and about 100m for Peromyscus maniculatus in New Mexico.

While having such quantitative information is the primary goal of the analysis, an

immediate consequence, of even greater importance, is the impetus (indeed, necessity)
to generalize the AKX model expressed in (1) to incorporate home ranges. We have
undertaken such investigations in a variety of ways and on multiple fronts, Space
restrictions’ permit only a brief sketch rather than a detailed description.

Omne simple way of incorporating home ranges in our model of epidemic spread is
to add potential terms as in (2) to (1). Such analysis, carried out by Maclnnis et al.
[21] has resulted in substantial modification in the AK predictions for refugia sizes
and shapes. A simpler model meodification in the AK equations has led us [22] to
deduce memory-possessing variations of the AK equations on the one hand and -

"We mean space restrictions for the author in the journal, not for the mouse in the field.
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time-dependent diffusion constant variations on the other. A particularly fertile
model we have developed [23] considers the dynamics of two types of mice,
stationary and itinerant (and susceptible and infected in each category). The
stationary mice are the adults that move within their home ranges and do not stray
far from the burrow. The itinerant mice are the subadults that must leave to find
their own home ranges. Our studies, which employ a combination of nonlinear
analysis and simulations, have led to unexpected new insights into the spread of the
Hantavirus. These will be reported elsewhere,
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