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Spatially non-local memory functions, and transfer rates are shown to result from local intersite interactions, through
an explicit derivation for a simple model. Their effect on the exciton mean square displacement is discussed.

Much of the recent use [1] of generalized master
equations in the description of exciton transport in
molecular aggregates has been based on the weak
coupling approximation wherein the relative weakness
of the intersite transfer matrix element J justifies the
retention of only the lowest order nonzero terms in a
perturbation development of the memory functions.
This approximation results in memory functions W(r)
(and, when the Markoffian approximation is invoked,
in transfer rates F') whose degree of spatial extent cor-
responds directly to that of the transfer matrix elements
J. Thus, if J's have nearest-neighbour character, so do
F’s or W(t)s. However, if the matrix elements J are
not too weak relative to a certain randomness param-
eter o (typically a quantity pertaining to the exciton-
phonon interaction), the exact memory functions can
be shown to develop a spatially non-local character.
We have found no discussions of this conceptually
interesting result in the literature with the exception
of Goad’s model calculation [2] wherein spatially
exponentially decaying rates appear. In this note we
give an explicit derivation of nonlocal memories for a
simple system, report a general expression for them
for more complicated systems, and mention their effect
on expressions for the exciton mean square displace-
ment and on effective transfer rates.

Consider an open one-dimensional “chain” consisting
of only three sites 1, 2, and 3. Let the exciton energy
in the absence of intersite interaction be site-indepen-
dent and therefore considered zero without loss of
generality. Let there be no phonons or other random-
ness in the system, and let site 2 be connected through
an intersite transfer J to 1 as well as to 3 but let there
be no Hamiltonian matrix element connecting 1 and 3.

The equations obeyed by the amplitudes ¢, (f) =
{m|Y(t), where | y(2)) is the system state and |m) re-
presents a site-localized state (m = 1, 2, or 3), are
therefore (with# = 1)

idey 3/dt=Je (1a)
1,3 2

(1b)

where ¢ 3 denotes ¢; or ¢3. Egs. (1) are solved trivially
and y1e1d for initial occupation of site 1 by the exciton,

ld(,’2/dt=J(Cl +C3)

PL(0) = cos* (t7//2) (22)
Py(£) =3 sin(t/\/2) (2b)
Py(f) = sin*(tJ//2) Q2¢)

where P, = cy,c,, is the probability that the exciton
is at site m. Inspection shows that eqs. (2) are equivalent
to the generalized master equation

ap,, (1) &
() f dr’ Z[ W, (1~ WP (')~ W m(t;t’)Pm(t’)}
(3)
with W, = Wy = Wand W3 = Wy =n, provided
W(r) = 272 cos(tJ/2) (4a)
n() = 272 sin®(tJ\/2) . (4b)

This is demonstrated by obtaining, from the Laplace-
transform of (3),

P —Py=(e+Ww+20)! (5)
By=1[e! = (e+3W)71] 6)
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where tildes denote transforms and ¢ is the Laplace-
variable. Comparison of (2b) with (6) gives (4a) and that
of the difference of (2a) and (2¢) with (5) gives W (¢)

+ 2n(t) = 2J2, which in conjunction with (4a) yields
(4b). Egs. (4) can also be shown to follow directly

from Zwanzig’s expression [3] for the memory kernel
containing projection operators.

In spite of its near-trivial simplicity the above cal-
culation contains an interesting result: although no
interaction matrix element exists between sites 1 and
3, a memory function (as given in eq. (4b)) does develop
between them. The price one pays for a closed proba-
bility description is thus not only nonlocality in time
but also nonlocality in space. At long times, the evolu-
tion in general will therefore be as given by a master
equation with long-range rates in addition to the
familiar short-range ones, the former being time-inte-
grals of functions like n(¢) suitably modified by damp-
ing factors. One also notices that the spatially nonlocal
memory function in (4b) is zero at # = 0 unlike the
local memory function in (4a). It can be shown that
this is a general characteristic and that it is directly
responsible for the fact that the master equations
(Markoffian or non-Markoffian) used in the part in the
limit of small J, have no spatially nonlocal contribu-
tions. That analysis as well as a number of new results
concerning these long-range memories and rates will
be published elsewhere [4]. Here we shall (i) display
the expression [4] for the local and nonlocal memo-
ries for a ring of IV sites (arbitrary V) in the absence
of exciton-phonon interactions, and (ii) present an
equation for the mean square displacement of an
exciton on an infinite chain in the light of the existence
of the long range memories.

Defining J¥ = (1/8/N) Z _ iy Ty €K7 the
memorties are given by

W ) = — ? e i’“m-")[Zq) {e+i(/** 44)}—1] )
7

where the & and q values, span over the NV values “in
the band”. In the limit of infinite V, eq. (7) gives
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W (ty's that are combinations of squares of Bessel func-
tions [4].

Considering an infinite linear chain on which an
exciton moves with no bias, note that (3) may be re-
written as

P, () X &

P EfdzCW(t—t)

X [P (£) + Py (1) = 2P ()] (8)
which immediately gives, for m2 = Zm msz

t t
=2 far mep=2 [ar 2 W), (9)
0 0

This constitutes a generalization of our earlier result
[5], which corresponds to the first term in the 7-
summation. The other terms arise from nonlocal
memories. Although eq. (9) and similar equations for
higher moments predict diffusion constants and trans-
fer rates that, in this large-J limit, differ from those
given earlier [6] (which were based on the result in
ref. [5]), the difference can be shown to be wholly

in numerical factors. That is to say, the moment ex-
pressions always contain powers of (J#) and the rates
can thus be shown to go as (1/J) in the large-/ limit as
stated earlier [6].
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