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The straightforward application of the standard relaxation time procedure is shown to lead to unacceptable results when
capture processes involving an actual depletion of the density or probability of the moving particle coexist with scattering
processes. It is shown through an explicit prescription how the standard approximation procedure may be modified for

such situations.

The well-known relaxation-time approximation of
transport theory [1,2], when applied in its standard
form to cases wherein true sink processes causing real
depletion of the density or probability of the moving
particle coexist with the collision processes, leads to
a certain absurdity. In this note we point out this
problem and suggest how the relaxation-time approx-
imation should be modified in such situations.

These situations are quite physical. A moving quasi-
particle such as an electron or an exciton could un-
dergo a capture process such as trapping at a site along
with the usual scattering arising from phonon or de-
fect interactions. The transport equation describing
the evolution of the probability f;(¢) that the k-state
is occupied is then

A (/a1 + 04 (1) = 20 [Qpyo (O = Qpp (D)), o
where the k'-summation would be an integral if £ is
continuous, where oy, is the capture rate, Oz de-
notes the usual scattering rates and where the trap
state is external to the k-band.

The standard relaxation-time procedure would re-
place the right-hand side of eq. (1) by a simple decay
term. Specifically, eq. (1) would be approximated by

! permanent address.

df ()/dt + o fi (D) = U = f (O, (2)
where 7, is the relaxatlon time suitably obtained from
the rates ;. , and fk is the t-independent thermal
distribution. Eq. (2) is, however, quite unacceptable
because it leads to the mcorrect result that f3.(¢) tends
to the non-zero value fk [(oy 7y + 1) at long times.

It is quite clear from eq. (1) or from the physics of
the problem, that f;(¢) should actually tend to zero
since eventually the quasi-particle would go complete-
ly out of the k-band and into the trap.

It is important from a practical viewpoint to learn
how to modify the standard relaxation-time prescrip-
tion in the presence of real capture processes. As in
the sinkless case realistic scattering rates Oy, are usual-
ly complicated enough to defy exact analysis and
necessitate the use of such approximation procedures.
Replacing flgh by zero in eq. (2) does give the required
long-time limit of f;(¢) but hardly constitutes a solu-
tion of the problem because one cannot then recover
the usual result f3.(2) —>fk in the absence of sinks if
we put o = 0.

We arrive at our suggestion for the modified pro-
cedure (eq. (6) below) by analysing how the standard
relaxation-time approximation (for oy = 0) is obtain-
ed. There is a simple case when that approximation
is exact. This happens when the scattering rates are
constant: Oy = I'/N, where V is the number of k-
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states in the band. Putting oy, =0, egs. (1) and (2)
are found to be equivalent to each other if the relax-
ation time 75 = (2 Q)1 = 1/T since, for this
case, f]:h = |/N. Although there are generally extra
factors in the usual expressions [1,2] for 7z, let us

retain the above prescription
1, = 20 Qe 3)

and observe that the standard relaxation-time proce-
dure (for ay, = 0) for the general case involving non-
constant Qs may be said to arise from the approxi-
mation

IOMACEYS 2 Q= 1 7y @)

for the first term on the right-hand side of eq. (1),
and eq. (3) for the second term. Alternatively, the
extra factors such as (1 — cos ) that arise in elastic
scattering [1,2] , may be incorporated in both egs. 4)
and (3). Note that in a certain sense eq. (4) arises
from detailed balance.

We now suggest that in the presence of true sinks
eq. (4) should be replaced by the natural extension

2 0 0~ T 04 Z 50
= [ 1 F (), (5)

where F(2) = Z; f;(#) is the total probability that the
band is still excited. In the absence of capture pro-
cesses F(¢) =1 and the standard results [1 2] are re-
covered. Generally, our prescription approximates
eq. (1) not by eq. (2) but by

A (D)]dr + 0y (1) = (FF () = £ (D). (6)

The 7;, may be obtained from more general standard
approximations [1,2] and not necessarily from eq.
3).

Eqg. (6) has the solution
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;) = £,00) exp {~t(ay +1/7)}

t
+ (R0 [ drexp {~(t—) (g + U IF(). (7)
0

The total probability that the particle has not yet
been captured, i.e. £(#), may be either approximated
by a suitable average exponential e~/ which would
lead to

£ = [£(0) = ;M(m (o — ) +1]
X exp {~#(ey, + 1m0}
+ [ )(r (o — @) + D] exp {-re}, (8)

or it may be obtained exactly from
t
F(f) = fdt’g(t -
0
X 22 £(0) exp {-1'(ay, + 17}, 9)
wherein g(¢) is given by
fr) =L [1 e ? & m)
-1
X exp {—t(ey + I/Tk)}] . (10)

the symbols £ and £l denoting, respectively, the
Laplace and the Laplace inverse transforms.

Exact evaluation of egs. (10), (9) and (8) is pos-
sible for certain cases, and for others perturbative and
nonperturbative approximation schemes for the cal-
culation of F(#) can be used. An application of some
of that material will be reported elsewhere [3] in the
context of exciton capture.

References

{11 J.M. Ziman, Electrons and phonons (Clarendon, Oxford,
1960).

[2] M. Dresden, Rev, Mod. Phys. 33 (1961) 265.

[3] V.M. Kenkre, Chem. Phys. 36 (1979) 377.



