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A theory of the kinematics of quasiparticle annihilation in lattices is developed on the basis of an exact calculation.
Details relevant to its application to the annihilation of Frenkel excitons in molecular crystals are presented. Explicit
expressions for observables such as the quantum yield and the time-dependent fluorescence intensity are obtained for
one-, two-, and three-dimensional crystals. The range of validity of earlier theories is examined in the light of the
exact solutions, and the limit of fast transport as well as that of fast annihilation is obtained. The effect of transport
coherence is studied, and it is indicated how one might measure exciton coherence from the observables.

I. INTRODUCTION

This paper contains an analysis based on an
exact calculation of the motion of particles on
lattices accompanied by annihilation. As such, it
is of general interest and should be applicable to
a number of diverse phenomena. The physical
system which motivated the present analysis and
towards which some of the results are slanted is
a collection of Frenkel excitons in molecular crys-
tals. The annihilation of excitons in crystals such
as anthracene has been studied for at least twenty
years. Recent reviews are by Avakian and Merri-
field and by Geacintov and Swenberg.' The best
known theoretical description of the kinematics of
of annihilating excitons is due to Suna.? Many ex-
perimental observations® have been made, some
of which are time dependent and some of a steady-
state nature. Others involve effects of the appli-
cation of a magnetic field. The basic procedure
consists in creating the excitons through optical
absorption, observing the luminescence, and
deducing aspects of the annihilation process from
the observed light intensity and the quantum yield.

Most interpretations of the experimental obser-
vations have been based on the assumption that
the exciton density is depleted through annihilation
at a rate proportional to the square of the local
density at that site, the constant of proportionality
being termed the annihilation rate y. Empirical
values of ¥ have been deduced and presented for
various systems.

One of the questions to be asked by a basic

theory of annihilation is whether the above assump-

tion is at all valid and what the range of validity

is for a time-independent Y. Our present analysis
contains an answer to this question. It also ex-
amines the effect of dimensionality of the lattice,
the effect of coherence in exciton motion, and the
effect of long-range annihilation. The observables
computed in terms of the theory are the time-de-
pendent emission light intensity and the quantum
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yield. In Sec. II we state the model and illustrate
the technique by obtaining exact solutions for a
one-dimensional lattice. In Sec. III we extend the
results to two- and three-dimensional lattices.

In Sec. IV we study the effect of nonlocal annihil-
ation, in Sec. V we obtain Boltzmann-type equa-
tions and examine the validity and meaning of v,
and in Sec. VI we explore the effects of coherence
(i.e., of wavelike or quantum-mechanical motion).
A discussion and summary are given in Sec. VII.

I1. TECHNIQUE OF SOLUTION
AND ONE-DIMENSIONAL MODEL

We analyze a system of particles moving on a
discrete lattice and being annihilated when they
are close to one another. Throughout this paper
we shall consider a system of two particles only
but we shall analyze successively more compli-
cated models. We begin with the simplest one con-
sisting of two particles moving on a one-dimen-
sional lattice of sites m, n, etc., through nearest-
neighbor transfer rates F so that if the particles
were not to interact, their occupation probabil-
ities P, (t) would satisfy

dp
—ll—
S=F P

mel

+P, =-2P,). (2.1)

However, they do interact and indeed annihilate
each other on contact. We describe this occur-
ence by a depletion of their probability at rate

B whenever they occupy the same site. The equa-
tion obeyed by P, .(¢), the probability that the
first particle is at m and the second at n, is
therefore

dpP
dt =F(Pm+1-n+Pm-1.n+Pm.n+1+Pm.n-l -4Pm.n)
—6mmBPm.m‘ (22)

We shall solve this equation exactly by employ-
ing the Montroll defect technique.* It is straight-
forward to show that if the solution of (2.2) with

2089 © 1980 The American Physical Society



2090 V. M. KENKRE 22

B=0and P, (0)=6, .8,,1s ¥,, (), the solution
of (2.2) for arbitrary B and P, ,(0) is

P €)= 3 Upy oo ©)P,, (0)

LER ]

=B Y 6, P (e 1osl€) . (2.3)

7S

Here tildes denote Laplace transforms and ¢ is
the Laplace variable. The first term on the right
side of (2.3) is the solution of the problem without
interparticle interactions and henceforth will be
called ﬁm,"(e). The second term is the result of
the interaction but involves P, () thus making the
“solution” (2.3) useless from a practical point of
view. The defect technique® however results in
an exact solution of (2.3). We rewrite (2.3) as

B )= T () =B D Doy er )P, (€) . (2.4)

Multiplying the case m =# of (2.4) by e'*", sum-
ming over m, and calling

Zﬁm.meik"‘:pk ’ (25)
etc., we get
B*e)=T*e)/[1+ BP*(e)]. (2.6)

The right-hand side of (2.6) is known in principle
in terms of the homogeneous solutions ¥ and the
initial conditions. Therefore, the inverse discrete
Fourier transform of (2.6), when substituted in
(2.4), provides the complete practical solution of
(2.4).

The Montroll defect technique* which thus gives
an explicit solution of (2.4) works when the “de-
fect region” represented by the B terms is small.
In this case that region is the line m=# in the two-
dimensional m,n space. The Fourier transform
(2.5) may be said to convert the plane into a line
and the defect line into a defect point, thus making
the exact solution possible.

While the exact solution may thus be obtained
for all P, .’s for arbitrary initial conditions, we
shall be interested here only in the quantity

QW)=Y P, &) (2.7)

men

for experimental reasons discussed in Sec. I. The
Laplace transform of (2.7) is obtained from (2.4)
and (2.6) as

é(e)=%[1—3(%%m>]. | (2.8)

We have used the results that

3P, (0)=1, (2.9)
D Ver, st =1 (2.10)

The first of these is obvious. The second repre-
sents the fact that in the absence of B whatever
sites they occupy initially the particles are at
some place or the other in the lattice at any time
t. We can rewrite (2.8) in the time domain in the
suggestive form

aQ(t) _
o= —B), (2.11)

h(€)=n°)[1+ BY°(€)]™ . (2.12)

The evaluation of A(¢) or of Q(¢) involves specifying
the initial conditions. It is straightforward to
carry through the analysis for any initial condi-
tions. We shall however consider only the com-
pletely delocalized one,

P, (0)=1/N?, (2.13)

with N as the number of sites in the lattice, and
the completely localized one

0)=5, .0

70,0781 °

P (2.14)

rosl

The former corresponds reasonably well to the
experimental situation in the exciton problem.
The latter represents the particles being placed
a distance of [ lattice sites apart (anywhere in

the lattice) and can be made to give any P,, (0)
through the principle of superposition.
Equation (2.13) leads to
n°(t)=1/N, (2.15)
whereas Eq. (2.14) gives
%)= D2 by mat (1) - (2.16)

These when Laplace transformed and substituted
in (2.8) or (2.12) yield  and k. Note that the right
side of (2.16) is the primary quantity to be com-
puted since its value at I=0 gives y°(¢).

Equations (2.3) through (2.12) are valid for any
transfer rates I, provided only that translational
invariance applies on the lattice. We shall now
evaluate # and  for the specific nearest-neighbor
F,.’s of (2.2). We have for the propagator

Uom ult) = e 8 (2F 1) (2F1) (2.17)

where I’s are modified Bessel functions. This
well-known result® may be established by Fourier
transforming (2.2) with B=0 and using the integral
representation of Bessel functions. This leads to
the useful result

> V()= €U (4FE) (2.18)
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We establish (2.18) through a simple manipulation
of summation formulas® involving products of
Bessel functions. A corollary of (2.18) is

3°(€) = (%+ 8F €)™/ 2 (2.19)

The key quantity é (€) is now obtained. For the
delocalized initial condition (2.17) it is

1 B
“Ne 1+ B/(e+ 8F<)1’2>' (2.20)

Q'(e)%(l

This expression is of experimental interest for
excitons as it gives both the monitored intensity

of light on Laplace transformation and the quantum
yield on the substitution € =2/7. For the localized
initial condition (2.14) we have

{(6/4F)+ 1-[(e/4F)%+ (€/2F)]1/2}')
[(e2+ 8F€)* 2+ B]

(e)——(l -B

(2.21)

Note that for =0, i.e., if both excitons initially
occupy the same site, (2.21) reduces to

é(e)% —1 (2.22)

1+ ————7—B
(e®+ 8F¢)t/2
III. TWO- AND THREE-DIMENSIONAL MODELS

It should be clear from the development in Sec.
II that Egs. (2.3) through (2.16) are independent

IN MOLECULAR CRYSTALS 2091

of the dimensionality of the model or of the nature
of the transfer rates F, provided that the latter
depend only on the difference (m —n). The results
specific to the one-dimensional model are (2.17)
and its consequences (2.18) through (2.22). In this
section we analyze two- and three-dimensional
models. We continue to consider only two parti-
cles as constituting the system. We now merely
regard m,n of the previous sections as vectors of
appropriate dimensions. Similarly &’s form re-
ciprocal lattices of the corresponding dimensions.
For a simple square lattice in two dimensions
the propagator expression analogous to (2.17) is

1)=e UL, (2F D), (26 1)], (2FDI, (2F1)
(3.1)

——

and the result which corresponds to (2.18) is
therefore

D~ Vi mestmyaty ()= €771, (4F D), (4FF) . (3.2)
my my

As seen in Sec. II the computation of the experi-
mentally relevant quantity @ requires the Laplace
transform of (3.2). The full expression is required
for the initial condition (2.14) wherein the excitons
are initially localized and separated by I, lattice
distances along the x axis and [, lattice distances
along the y axis. For this condition (2.16) then
gives’

1
- (4F ) =T ((I, + 1,+ 1) /2)T (I, + 1 +2)/2)> (1.+1,+ 1 Lo+ I+ 2 (u) 4F\?
0 = X k') X Yy — f
n°(€) ( VaT(,+ DT+ Die s 8F=m  JLa\ 2 bt L1 ( p > : (3.3)
r
where F, is the hypergeometric function of four - 1 (2/m)B 8F \]|™
varlables The particular case I,=1,=0 of the Q(€)=E 1- Ne [1+ <+ 8F 5€<€+ 8F>] :
above result gives §°(€): (3.6)
zp"(é) (Z/gl)" :xc( 8F> N (3.4) For a simple cubic lattice in three dimensions
€+ €+

where X is the elliptical integral of the first kind
defined by

x(x)= f

Equation (3.4) is obviously the Laplace transform
of ¢®F*[3(4Ft). Finally a substitution of (3.3) and
(3.4) into (2.8) gives the desired () for the local-
ized initial condition (2.14). Similarly the substi-
tution of the result 7°(¢)=1/N and (3.4) into (2.8)
gives the desired Q (€) for the delocalized initial
condition P, , . (0)=1/N°. Being both simpler
and of greater experimental relevance, at least
to the exciton problem, we display this result
explicitly

(1 ~x sin 9)l 2 (3.5)

the propagator is
Dy myms miryngD) = €V L (2F D), (2FD), (2F)
xI%(ZFt)I"y(th)InZ(ZFt). (3.7

Equations analogous to (3.2) and (3.3) may be
written down in a straightforward fashion. We
show the explicit expressions only for the initially
delocalized case P, ... . (0)=1/N°. One then
requires only

oe)= [ aretyny= [ dret ey ARy .
w<<)f0 e szo o7t e U(AFY)
(3.8)

The Laplace transform of I3 has been tabulated
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by Maradudin et al.? in connection with problems
of lattice dynamics. Calling that function 9m(€)
we find

1
€

§(e)= (1_1%[“39?1(“121&*)]-1). (3.9)

In obtaining the above expressions we have as-
sumed that the particles have isotropic transfer
rates. In case this is not true, or in case lattices
other than the simple square and the simple cubic
are to be considered, the above expressions may
be modified in a straightforward fashion.

IV. EFFECT OF LONG-RANGE ANNIHILATION

The results of Secs. III and IV are based on the
assumption that annihilation occurs only on con-
tact, i.e., when the two particles occupy the same
site. We shall now indicate how the analysis may
be generalized to treat annihilation at finite dis-
tances.

What is required is clearly the replacement of
the last term in (2.2) by =23, 8, .1 BiP ,, , Where
B, is the annihilation rate at a separation of /
lattice distances. Equation (2.4) is then general-
ized to

Pm. met = Nomymet — Z Bl' l/)m-r.m-ri-l-l'Pr,r-l-l' . (41)

!

We now define B¥ through

ﬁf:' Zﬁm.mq-leikm (42)
m
and obtain
Br=t =2 BB (4:3)
l'

The summation in (4.3) extends over the range of
the annihilation interaction. For B, =B6, , the
previous results such as (2.6) are recovered. The
opposite limit of constant annihilation interaction
(independent of interparticle distance) is repre-
sented by B, =b and results in the trivial result
that the total probability @ (¢) decays exponentially
with the exponent . For a general intermediate
set of B,’s one cannot go further than (4.3) unless
the structure of B, is relatively simple. For in-
stance, if B, is zero for >, signifying that an-
nihilation occurs only within a distance [,, a de-
terminant of /; rows and columns must be eval-
uated from (4.3). As an example, consider B;=0
for |1|>1 and B,=B_,. This represents the parti-
cles annihilating each other at rate B, when they
are in contact, and at rate B, when they are in
nearest-neighbor positions. Equation (4.3) gives

(1+ BO$§)133+ B@’;Pf"' B@’fpgl =755
B jiPh+ (1+ B J8)Pk+ B, JiP% = 7t (4.4)
BOZPng-F B1¢)’;Pf+ (1+ Blng)P’il =1

where we have set ¢ =¢? but not n*=n* to allow

total freedom in the initial condition. Note that a
quantity such as ¢{ is given by

(pg(t) = E zpm, m+1(t) = Z e-4FtIm(2Ft)Im+1(2Ft)
=™ (4F1) (4.5)

where (2.18) has been used. Similarly ¥2(t) equals
e Pt (4Ft).

A solution of (4.4) for 2= 0 followed by a substi-
tution of the solution in

§(©) =141 - BB+ BB+ BB (e} (4.6)

gives the basic quantity of interest. .

_ It is straightforward to solve for P9, P?, and
P2, from (4.4) and evaluate (4.6). We do not ex-
hibit the explicit expressions because they add
little to the physics and are cumbersome. It is
also only a matter of algebra to obtain similar
expressions for two- and three-dimensional mo-
dels. In the rest of the paper we shall return to
the case B; =0, , for the sake of simplicity. It
should be kept in mind, however, that if any par-
ticular application of the present theory makes it
necessary to include ‘the effects of long-range an-
nihilation, they can be described by the methods
shown in this section.

V. DERIVATION OF BOLTZMANN-TYPE
EQUATIONS AND INCLUSION OF RADIATIVE
DECAY

An interesting question that one might ask in the
context of (2.2), the starting point of our analysis,
is the following: What does it predict for the
evolution of f,(¢), the probable number of parti-
cles at m? The answer is immediate once one
recognizes that

fu)= 2 [P, 0)+P, (0)]. (5.1)
n
Note that we use the normalization 25, f,(t)= 2 so
that f,, measures the probable number of particles
at m rather than the probability itself. Division
by two gives the probability. We find for the evo-
lution of f,(t)

d -
LooFfport s =) =2BP . (5.2)
Compare (5.2) to (2.1) and observe the familiar

connection of a lower member to a higher member
in a hierachy of distribution functions.
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Substitution of (2.6) in the inverse of (2.5) gives,
with (5.2),

Yo _ -
dt _F(fm+1+fm-1 2fm)

-5 [ aeet Tt BRI,

(5.3)

where the € integration is on the Bromwich con-
tour. This solution is explicit, although the last
term in (5.3) contains the quantities 7 and ¢ na-
tural to a higher space. We shall now make it im-
plicit in two steps. I [1+Byp*(e)]™ is expanded in
B, and the lowest term is kept, (5.3) gives

2B

d
Eftm=F(fm4-l+fm-1 - 2fm) _<F>nm, m(t) . (5.4)

But 7,,,(f) is the probability that the two particles
occupy the same site under the given initial con-
ditions but with the provision B=0. For B=0

this probability is the square of the single-particle
probability because the particles would be inde-
pendent. The passage from (5.3) to (5.4) involved
the assumption that the effect of B was small.
Under the same assumption we shall replace 7,,,(t)
by 1f2(t) and obtain

Eddltm=l'\(fm+l+fm~x -2fm) —<_ZBXI'>ffn (5'5)
as the familiar? equation with the bilinear “col-
lision” annihilation term y given by (B/2N). An
identical treatment of the quantity @(¢) from Eq.
(2.7) gives a similar approximation to the exact
(2.11).

Approximate equations such as (5.5) have served
as the basis of most analyses'™ of experimental
observations relevant to excitons. It is thus im-
portant to understand their range of validity. Their
derivation given above requires that the basic an-
nihilation rate B be small. This is, however, in
contradiction with the actual situation in most ex-
periments where the annihilation rate is believed®
to be much larger than the transfer rate. We shall
now show that (5.5) may also result in such cases.
Presumably this corresponds to the well-known
fact that the usual Boltzmann equation for gases
is known to be valid even for strong collisions
provided the gas is dilute enough, and in the pres-
ent context to the fact that the passage from (5.3)
to (5.4) and that from (5.4) to (5.5) introduce er-
rors in “opposite directions.” .

_If we approximate (5.3) by replacing *(€) by
¥ %e), we may write

IN MOLECULAR CRYSTALS 2093
L ((RGI ORI
[ Carre-mpen, 5.6)

where the further replacement of 7,, ,, by (3)f2
has been made as in (5.5), and where the “annihil-
ation memory function” I'(f) is given by
I‘(t)=-2]}—v—f de e**B[1+ By°(e)]™ . (5.7
Basic to (5.6) is the replacement of *(¢) by
1710(6). This replacement does not involve a small
B approximation. It is similar to the replacement
of nonlocal terms in time by local “Markoffian
terms,” the only difference being in that this ap-
proximation involves space rather than time. If
we further make a Markoffian approximation in
time, i.e., if we replace I'(¢) by 6(¢) times a suit-
able integral of I'(¢) we recover (5.5). However
it is easy to see that integration of I'(¢) from ¢=0
to = will not do because $°(0) is infinite. We
therefore must introduce some cutoff in the inte-
gral. We shall call this cutoff time 7,/2. The
existence of radiative decay in the exciton prob-
lem, which will be introduced explicitly below,
makes it plausible to use that decay time as the
cutoff time. In any case
7/=f dt et/ 7T (¢) (5.8)
0
may be written independently of the identification
of 7, with the radiative decay time 7. With such
a prescription the one-dimensional model gives

(R )

(5.9)

with B and (1+4F7 )2/ being the respective
limits of (2N)y as the annihilation rate B is small
or large with respect to the “motion rate”

1+ 4F‘ro)‘/2/‘ro.

For the first time in our analysis we shall now
introduce the radiative decay that excitons under-
go. It is an important addition since the experi-
mental observations rely on that decay itself to
measure such quantities as Q(¢). In the absence
of annihilation, i.e. of B, we would have had the
term P, /7 added to the left side of the probability
Eq. (2.1). What should we add to (2.2)? A mo-
ment’s consideration shows that one must replace
(2.2) by

d. 2P .
d;n + T =‘P(Pm+1.n+Pm-1'n+Pm,n+l

+Pm.n-1 _4Pm.n) —6m.nBPm.m'
(5.10)
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The factor 2 arises not from the fact that there
are two terms summed in (5.1) but from the fact
that P, . can be depleted through the decay of
either particle. It is easy to check that for B=0
(5.10) would give (2.1) with P, /7 added on the left
side.

Our true starting point for the analysis of ex-
citons undergoing radiative decay as well as an-
nihilation and motion is therefore (5.10). How-
ever, is it enough as a starting point? Is the
quantity obtained from (5.1) really the probable
number of particles at m? The answer to the
latter question is in the negative now that a 7 has
been introduced. The answer to the former ques-
tion is also in the negative: An additional equa-
tion of motion is required for p,(f), the probability
that there is only a single particle in the system
and itis atm. Thisquantity is not included in Pm'"(t)
because underlying the latter is the tacit assump-
tion that there are two particles in the system.
Thus 3 times the right side of (5.1) gives the
probability that there is a particle at m and theve
is a particle elsewhere. As a result of the intro-
duction of 7 this probability must be added to p,,(¢)
to give the total probability that there is a particle
at m, irrespective of whether the other particle
does or does not exist. To obtain the probable
number of particles, which was denoted by f,,
above, the right side of (5.1) should not be multi-
plied by 3 before being added to p,. Thus

Ful)=D )+ P )+ P, (D] (5.11)

n

holds generally. It reduces to (5.1) if the possi-
bility that a single particle exists is excluded.

Now we must seek an equation for p () as well,
since a complete description of the system re-
quires p,, in addition to P, . It is clear that this
equation is

dpn P
%tm"‘ 7m=F(pm+1+pm-1 "'2pm)

42 Y [P0+ P, 0] (5.12)

If we also write an equation for ¢(¢), the probabil-
ity that there is no particle in the system,

dg 1
== 2wt B3 Poms (5.13)

we find that the probability,

me+% Z (Pm,n+Pn,m)+q s
m

mn

is always equal to 1 as it should be. Note that the
probable number of particles is given not by 1 —¢
but by the sum over m of (5.11).

With the inclusion of radiative decay we must
consider the system phase space to consist of
three subspaces, the two-particle one with P, ,,
the one-particle one with p,, and the zero-particle
one with g for the description of the evolution.

The experimentally relevant quantity related to
the monitored fluorescence intensity in the exciton
case is the “differential photon count rate.” Being
the rate at which photons come out of the system
as a result of the radiative decay of excitons, it
is given by

(¥ =1 B+2
g(t)— (#) radtative_T ; pM( )+T ;Pm'" ’ (5‘14)

and the quantum yield, i.e., the ratio of the num-
ber of excitons that comes out radiatively as pho-
tons to the number put in, is

¢=§fwdt3(l)=%lim5(e). (5.15)

€>0
However, if initially there are always two excitons
in the system, p,(0)=0 and (5.12) gives

Zm:l;m(€)=<2 Zﬁm,"(€)>/(1+ €T). (5.16)

mn

It is thus possible to express the differential photon
count rate and the quantum yield ¢ arising from

the conjunction of (5.10) and (5.12) in terms of the
solution of 25, P, , from (5.10) alone. Explicit
use of (5.12) is no longer necessary. Recalling
that P, . in (5.10) is given by ¢!/ times the P,, ,
in (2.2) because of the absence of the radiative
decay term in the latter, we finally write expres-
sions for the observable quantities 9(¢) and ¢ in
terms of the solutions of Q(¢#) arising from (2.2)

9(t)=(2/T)e"/’<e"/"Q(t)+% f‘dt’e“""Q(t’)),

(5.17)
d=(2/7)Q(2/7). (5.18)

It is emphasized that these expressions are the
result of Egs. (5.10) and (5.12) which do incor-
porate radiative decay but that the @ appearing
in (5.17) and (5.18) is the result of (2.2) or its
generalizations without 7, and is thus given by
(2.8), (2.20), (2.21), (3.6), or (3.9).

VI. EFFECT OF TRANSPORT COHERENCE

How should our analysis be modified if the
basic transport equation is not (2.1) at all but
describes “coherent” behavior, an extreme of
which is described by the Schrodinger equation
for amplitudes C,? This question is of particular
relevance to excitons because the issue of ex-
citon coherence has been discussed a great deal® '°
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in recent times. By completely coherent trans-
port is meant the wavelike transport characteris-
tic of the equation
Cp_

ar = —iJ(C 1+ C ppey) (6.1)
(or of its non-nearest-neighbor counterpart in-
volving J,,’s) in obvious notation, the probabil-
ities being given by P,=C*C,. The completely
incoherent limit is described by (2.1). Tradition-
ally, quite different formalisms have been used
in the two limits but we shall show here how a un-
ified treatment can be given. Such a unified treat-
ment may take as its starting point stochastic
Liouville equations® or generalized master equa-
tions.'® The former have been employed for other
purposes such as the analysis of exciton trapping!
and fluorescence depolarization!? whereas the lat-
ter have been used for studying transient grating
observations!® and trapping.’®* They are essentially
equivalent to each other'® and we shall therefore
begin with only the generalized master equation

t
i%@=fo @t 30t =P (1)

=Wt =2 )P ,(¢")] (6.2)

to replace (2.1), a similar equation with B included
being written in correspondence to (2.2). We
stress that the completely incoherent case, i.e.,
(2.1), is recovered from (6.2) under

W)= F (8 1, g+ O, )08 ‘ (6.3)

whereas the completely incoherent case, i.e.,
(6.1), corresponds®?® to

W, 6)=2J2[J2  +J% 2, J

~n+l m=n+1" m=n-1

- 2an-n -J m=n (']m-n+2+ Jm-n-z)] ’
(6.4)

where J,, is the Bessel function of mth order of
argument 2J¢.

The entire further treatment of Sec. II remains
unmodified except for the meaning of the ¥’s.
Thus, in particular, (2.3)—(2.7) and (2.8) hold ex-
actly in the form given. However, the ¥’s appear-
ing therein must now be taken as products of prop-
agators corresponding to (6.2) above rather than
to (2.1). This is a remarkable result because it
allows a unified description of the effect of trans-
port coherence on annihilation, no matter how
little or how large the amount of coherence. For
instance, for the delocalized initial condition of
(2.13), Eq. (2.8), written as

~ 1 1 B
Q(€)='€‘(1 ~ Ve H_BW) ) (6.5)

IN MOLECULAR CRYSTALS 2095

shows clearly where transport coherence enters.
It is in, and only in, §°(€). It has been shown in
Eq. (5.18) that yield expressions are obtained by
the replacement of € by 2/7. It follows therefore
that substantial coherence effects will be observed
in those cases when the actual $°(2/7) is substan-
tially different from that [such as (2.19)] for the
completely incoherent case. However, %) is
derived from Laplace transforms of ‘W, (), and
the completely incoherent limit is given by the
replacement [see Eq. (6.3)] of W, (e) by W,,.(0).
Thus it follows that substantial differences in the
actual yield and that predicted in the incoherent
limit will occur when 7 is comparable to or small-
er than the decay time of the memory functions.
This is completely in keeping with our physical
understanding. The incoherent limit does in fact
describe the situation wherein the memory func-
tions decay very rapidly. The radiative decay
time 7 serves as a comparison time for the mem-
ory decay as far as yield observations are con-
cerned.

To show the explicit effect of transport coherence
on annihilation explicit expressions for w,, must
be written down. Such an expression has been ob-
tained by the author earlier'*®% and it is given
by multiplying the right side of (6.4) by e™?,
where @ is a randomizing or bath parameter.*®
The transform of the propagator, i.e., Eme“‘”’zpm(e),
has also been calculated*®*®:

3 et (o) ={[(e+@)?+ 162 sin%k ]/ 2 — ) .

(6.6)

. We now point out that (2.18), which has made the

exact calculations presented so far in this paper
possible, is a particular case of the general chain
condition® obeyed by probabilities. Thus for all
propagators no matter what the detail of w,,(t),

lpl(t1+ t2)= Z lpl -m(t‘)z/)m(tg) ’ (6.7)

provided only that translational invariance applies.

In fact a term such as the first one on the right

of (2.3) is based on this chain result. Symmetry

also gives ¥,.,,= ¥,,., for probabilities and (2.18)

is thus seen to be indeed a particular case of (6.7).
As stated in Sec. II, the key quantity to be calcu-

lated is the right side of (2.16). With (6.7) we thus

have

D" U malat)=9;(2at) (6.8)

which for the propagator of (6.6), describing par-
tial coherence, gives

- 1
2 bmma(@ =55 25 ¢ {[(Be+a)
m R
+16J2sin%k['/2 —a}™

(6.9)
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with its particular case obtained by setting =0
and taking the infinite size limit

- 1 2r
W=7 arf{lze+a)*+16J%sin’3k /% —a}.
o
(6.10)

Equation (6.10) is valid for arbitrary degree

of coherence and reduces to the completely in-
coherent case treated earlier [Eq. (2.19)] in the
limit J =, -« 2J2/a=F. The integral in (6.10)
has been evaluated exactly by Wong'” in the con-
text of the effect of exciton coherence on trapping
observables and equals

2a

(e2+ dea)(€2+ dea + 64J2) 1/ 2
. 2/

[(€ + 20)*+ 64J7

$°(€)=[

]1 72 SC(x)

N 4a2 2/
[(€+20)2+ 64J2]t/2 €%+ dea + 64J°

n(y%x),

(6.11)
]

B7/2

where y2 and x are given by 64J%(€?+ 4ea + 64J%)™
and 8J[(e+ 2a)?+ 64J%]/2 respectively. Here X(x)
is the elliptic integral of the first kind defined in
(3.5) and 7m(y?,x) is the elliptical integral of the
third kind defined by

I . x):f"/z de
Yo (1 -x%sin?6)'"%(1 — y?sin?6) °

(6.12)

As stated above, (6.11) reduces to (2.19) in the in-
coherent limit and to

- 2/m 8J
0 =
vo(e) (€2+ 64J2%)/2 x (€%+ 64J%)172

(6.13)

in the coherent limit represented by (6.1). The
observables 9(¢) and ¢ are now obtained from
(5.17) and (5.18) after the substitution of (6.11) in
(2.8). For instance, for purely coherent motion
in one dimension with nearest-neighbor transfer
elements J, the quantum yield for the initially
delocalized condition is given by

¢=1 "(I/N)<1+ (B7/2)(1+ 1677771 (2 /m)acaT T /(1 1&1272)1/2)) ’

We do not feel that it is necessary to repeat the
analysis in higher dimensions or with long-range
annihilation in the coherence context. The steps
are all clearly given above and it is straightfor-
ward, although a little cumbersome, to combine
the various elements into a single calculation.

We thus expect quite different expressions for
the quantum yield for highly coherent transport
[see (6.14)] and for highly incoherent transport
[see (2.20)]. Values of J are often known from
theoretical calculations. The use of (6.11) in (6.5)
and of (5.17) and (5.18) will then allow one to mea-
sure the degree of coherence, described by the
value of @ or of J/a, from the observed quantum
yield and fluorescence intensity. Another obser-
vation of use to the measurement of coherence
would be the temperature variation of the quantum
yield.

VIIL. DISCUSSION

We have presented above an analysis of parti-
cles that move on a lattice and annihilate one
another, which is particularly relevant to excitons
in molecular crystals. We begin this discussion
by listing its advantages. The theory is based on
an exact calculation and all observables are ob-
tained in terms of analytic functions. It is appli-
cable to two- and three-dimensional realistic

(6.14)

r
crystals as well as for one-dimensional models.

It gives exact expressions for the quantum yield
and fluorescence intensity without going through
the usual annihilation equation (5.5) whose validity
is definitely not universal. It allows the incorpor-
ation of nonlocal annihilation. It describes in a
unified manner the effect of transport coherence.

It also gives expressions for the much-used quan-
tity v and sheds some light on the meaning of the
assumption involving its use and the use of (5.5).
The theory is not restricted to steady-state situa-
tions and the time dependence of fluorescence in-
tensity is obtained analytically up to an inverse La-
place transform. The quantum yield expression

on the other hand is totally explicit. The theory is
also applicable for arbitrary initial conditions,

not being restricted to symmetric situations.

The main shortcoming of the theory in the pres-
ent form is its inapplicability for cases wherein
there is a high concentration of particles. This
refers in the exciton context to high intensities
of exciting light. This inapplicability is reflected
in the models considered above in the assumption
that the system consists only of two particles.

The actual system will initially contain pN parti-
cles, where p is the initial concentration and N

the number of lattice sites. If p is small compared
to unity, the kinematics of each particle may be
described by that of 3(oN — 1) separate systems
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of two particles each of the kind analyzed in this
paper. For small p, the factor 1/N appearing in
the various expressions for the observables [such
as (2.20), (3.6), (3.9), and (6.14) should be re-
placed by half the concentration p or, more ac-
curately, by (1/2N)(pN —1)]. However, for high
concentrations the analysis must be modified in

a significant fashion. The other applicability ques-
tion for the theory is connected with the suitabil-
ity of the generalized master equation to describe
the effects of coherence. The equation is exact

for completely localized or completely delocalized
initial conditions.!® The latter represents fairly
well the experimental situation for excitons. It

is also expected that the generalized master equa-
tion is a good description for intermediate initial
conditions provided that they do not involve severe -
departures from the complete localization orde-
localization extreme. If they do, and if transport
coherence is expected, a stochastic Liouville equa-
tion may be used. The present theory also needs
to be generalized to treat effects of magnetic

fields on annihilation.? It is intended to present
these extensions of the theory in a future publica-
tion.

The specific results we have obtained are as
follows. For a system of two particles annihilating
each other on contact as in (2.2), but moving either

)
2,0 - [ary

P, @) ,

’
— ¢ =t"P,,

mm',nn

- Z 6m,n+l f dt'ml(t - t’)Pmm*‘l(tl) ’
1 o

and another equation for pm(t), whose details we

do not show. Equations (2.2), (5.10), etc., are
particular cases of (7.2). The ®,’s decide the
spatial range of the annihilation, the dimensionali-
ty of m, n, etc., corresponds to the dimensionality
of the lattice, and the ¢ dependence of W(t)’s de-
termines the coherence in transport. We have also
included memory in the annihilation rates ®, for
generality.

We stress that the replacement of 1/N in the
various expressions such as (6.4) by (p/2), where
p is the particle concentration, is not an ad hoc ap-
proximation but can be shown to represent the first
term in a series in ascending powers of the parti-
cle concentration. Our analysis is therefore by
no means restricted to the trivial system of two
particles in an infinite system but to one containing
a finite, but not too large, concentration of anni-
hilating particles. In the exciton context this
means that the theory is applicable to cases
wherein one has small intensities of exciting

n' (t,) -w nn
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as in (2.1) or more generally as in (6.2), the total
probability @(¢) that the two particles exist is
given by (2.8). Particular cases of this result are
(2.20) for a delocalized initial condition and (2.21)
for a localized initial condition, both applicable
for one-dimensional incoherent motion as in (2.2).
Similar results for incoherent motion in the two-
dimensional square lattice and the three-dimen-
sional simple cubic lattice are, respectively, (3.6)
and (3.9). Equation (6.5) with (6.11) gives the ef-
fect of transport coherence on exciton annihilation,
the purely coherent limit being in (6.14). The ef-
fects of spatially nonlocal annihilation are in (4.6)
and (4.4). The annihilation constant v is given in
(5.9) and a non-Markoffian generalization of it in
(5.7). Most of the expressions presented in the
various contexts are for @(e), the Laplace trans-
form of the total probability > miE mq(€), and we
therefore point out that (5.17) and (5.18) connect

Q (€) explicitly to the measurable quantities, viz.,
the fluorescence intensity 9(¢) and the quantum
yield ¢. Thus the general expression for ¢ for a
delocalized initial condition is

=1- (p/?)(T/z)(%>

The most general starting point for our analysis
is the equation

(7.1)

mm* (t - t’)Pm,n (t’)]

(7.2)

light since p is proportional to the light intensity.
The important question of whether the equation~3
for the exciton density

WD -yt (1.3)
13

which is the basis of most interpretations of ex-
perimental data, is universally valid has been
answered in the negative in this paper. Further-
more, the discussion preceding (5.9) clarifies in
what sense (7.3) is applicable and gives an expres-
sion for y. Evidently that expression, which per-
tains to the evolution of the number of particles f,,
and thus describes a rate, should be multiplied by
the system volume (or area or length) to give the
usual 7’ in (7.3), which has the dimensions of
cm?sec™ where d is the dimensionality. The ex-
pression for ¥ given in (5.9) shows clearly the
competing processes of annihilation and motion
which contribute to it. It becomes identical to the
basic annihilation rate or to the “motion rate” in
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the respective limits of slow or fast annihilation.
Further elaboration on these matters will be given
elsewhere.

We conclude by emphasizing that this paper con-
tains a unified treatment of the observable effects
of transport coherence on annihilation and is one
of a series of papers™®®):!* devoted to the question

of how coherence may be actually measured from
experiments.
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