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We present an explicit expression for probability propagators for the motion of a quasiparticle in a one-dimensional
crystal with arbitrary degree of transport coherence. The expression is exact, simple, and convenient for practical compu-

tations, analytical as well as numerical.

The motion of quasiparticles such as Frenkel ex-
citons, in periodic lattices as in molecular crystals,
has come under active investigation in recent times
[1-3]. A particularly interesting basic issue is that
of the degree of transport coherence. Various models
have been studied to this end. It is thus well known
that in a one-dimensional crystal of equivalent sites
in which the quasiparticle moves through nearest-
neighbor transfer rates #, the probability that the
mth site will be occupied at time ¢, counting from
the initially occupied site as the Oth site, is given by

P (n=e"?FI (2FY), (1)

where [ is a modified Bessel function. This probabili-
ty is called the propagator, the quasiparticle motion
is said to be completely incoherent, the underlying
picture is that of a hopping one from site to site in
the manner of the random walker, and the equation
of motion is

P (1)dt=FIP,, () +P, () -2P, (D). ()

On the other hand, if the quasiparticle moves through
nearest-neighbor interaction matrix elements V, rele-
vant to a (tight-binding) band with energy 2V cosk,

the probability propagator is
- 72
P (t)=J,(2V1), 3
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where J is the ordinary Bessel function. The motion

is said to be purely coherent in this case, the under-
lying picture being that of motion through band states
with no scattering among them. The corresponding
evolution for the amplitudes C,,, , whose squares are
the probabilities, P, ,is

dC, (A)jdt = ~iV[C, , (O +C,,_, O] )

Of importance is the intermediate situation wherein
scattering occurs at a finite rate a. It yields the above
two cases as extreme limits and is generally represent-
ed by the evolution equation

dpmn/dt=_iV(pm+ln +pm—ln ~ Prn+l ﬁpmn—l)

—ofl — 6m’n)pmn (%)

for the quasiparticle density matrix p. The coherent
limit is & = 0 which gives eq. (4) and the incoherent
oneis V=, a—>o, 2V2%a= const = F, which gives
eq. (2).

Although eq. (5) has been used in a variety of ways
[2,3], as for calculating mean-square displacements,
velocity auto-correlation functions, quantum yields,
etc., its solution, e.g. the probability propagator, has
not been given in a convenient form. The purpose of
the present note is to provide such a convenient, sim-
ple, and practically usable expression for the propaga-
tor.

We first exhibit that result and then show its deri-
vation. The result is
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P (1)=JLQVne™
t
+ f du e~ 02 V(2 - ut)?). (6)
0

One immediately sees the simplicity of eq. (6) and its
connection to the coherent result eq. (3). The prac-
tical usefulness of eq. (6) arises from that connection
and the fact that numerical calculation from eq. (6)
is trivial. It involves nothing more complicated than
a single integration which is, furthermore, unimpor-
tant at short times, the propagator being given then
simply by the product of the coherent expression

eq. (3) and the exponential exp (—az):

P () ~J2 (Ve . @

The two limits of eq. (6) viz. egs. (1) and (3), can be
obtained easily by Laplace transforming eq. (6),as
will be evident below. We have plotted the self-propa-
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Fig. 1. Probability propagators plotted as a function of the
dimensionless time V't for several values of the coherence pa-
rameter ¥/a, which is proportional to the mean free path in
units of the lattice constant. The probability of the initially
occupied site is plotted in fig. 1a and that of its ncarest neigh-
bor in fig. 1b. The extreme limits of pure coherence and com-
plete incoherence are also shown.
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gator Py(t) and the propagator for the nearest neigh-
bor, Py (¢) for several values of the coherence param-
eter Vo in figs. 1a and 1b respectively. The coherence
parameter is essentially the mean free path in units
of the lattice constant since the average group veloci-
ty of the coherent quasiparticle is proportional to ¥V
and the time between scattering events to 1/c. We
have also displayed the coherent limit, i.c. eq. (3) and
the incoherent limit, i.e. eq. (1). Already for V/a
= 0.1 we see that the exact result coincides with the
incoherent limit except for the shape difference at
small times. As has been explained several times in
the literature [2,4,5], this shape difference can sig-
nal the presence or absence of coherence.

Another expression for the propagator exists (31
in the literature and has been used for numerical cal-
culations. It is given by

K
=% ikmyp. 2 202 12
P (1) oy f_ dk ¥ [ — 16V “sin“(k/2)]
—-K

X exp{t{—at [a? — 16V 25in2(k/2)] 11213

™ s
+-i5 ak [ arem (87 sinlsink/2)]?
0

8r° Zn

X [16V2sin?(k/2)sin’l — o®] 7}
X exp {t[—a + 14V sin(k/2) cos]}, (8)

where the first term is present if o > |4V sin (/2.
in which case & = 2 sin—!|a/4¥]. This expression in-
volves two integrations and its connection with the
extreme limits is by no means transparent. The con-
siderable advantages that eq. (6) possesses over eq. (8)
for analytical as well as numerical calculations are ob-
vious from a comparison. Indeed we have already
utilized the simplicity of our central results eq. (6)
in various calculations, analytical as well as numerical,
including those for Ronchi grating signals [4,5] and
for trapping observables in the present of coopera-
tive trap interactions [6].

The derivation of eq. (6) from eq. (5) proceeds
through the conversion of eq. (5) into a generalized
master equation with the memory functions W, (D)

w, ()=e ! (d/dn)J%,_, V), 9)

as shown elsewhere [2], followed by the calculation
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of the propagator in the Fourier and Laplace domain
as

PE(e) = [e + WO(e) — WH(e)] !

= {[(e + @) + 16V 2sin2(]/2)) 12— o}, (10)

Tildes denote Laplace transforms, € is the Laplace
variable, and the discrete Fourier transforms are de-
fined through expressions such as

pk=23p ckm. (11)

m

The inversion of the Laplace transform into the form

Pr(#) =1 — e~ [4Vsin(k/2)]

£
X fdu expla(r? — L42)1/2]./1 [4Vusin(k/2)] (12)
0

is straightforward [2,7] and uses well-known results
from Laplace transform theory [8]. We now integrate
eq. (12) by parts and use the fact that J; equals the
negative derivative of J to obtain

PE(r)=J, [4Vtsin®(k[2)] e

t
+ f du oze_"‘(t_“)J0 [4V(? - u) M2 in(k/2)] .
0

(13)

For grating signal calculations (4,5,7] eq.(13) is di:
rectly useful. To obtain the propagator form eq. (6)
explicitly, we merely Fourier invert eq. (13) recog-
nizing that the inverse of J [Z sin?(k/2)] is an (Z/]2).
The derivation is thus complete.

The extreme limits of eq. (6) are seen clearly
through those of eq. (10). The coherent limit is trivial
as it involves & = 0. The incoherent limit of eq. (10)
gives, through a binomial expansion,

BEe) = [e + 8V Ya)sin?(k/2)] 1, (14)

which is the transform of the incoherent propagator
eq. (1), with F =2V ?/a.

For the sake of completeness we also present the
propagator corresponding to a richer form of the
stochastic Liouville equation (5) viz.

dpmn/dt =—i V(pm+ln tPm_1n " Pmn+l ~ Pm n—l)

—ol - 8m,n)pmn *8pn Y

X (pm+1m+1 T Pm_1m-1 '2pmm)’ (15)
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where 7 denotes the rate at which the quasiparticle
moves via an additional channel of motion such as

through the assistance of phonons. The propagator
expression is

t
P () =J,2n(2Vt)e_°" + f du aexp[—a(t — u)]
0

X 20 H, _ )72V —uh)'), (16)
H =™,
+ (v/e) (Im—n+1 +Im—n—1 - 2Im—n)] : (17)

The I’s are, as before, modified Bessel functions and
have the argument 27¢. The Laplace and Fourier trans-
form of eq. (16) can be used directly in work on
Ronchi gratings [4,5]. However, the practical useful-
ness of eq. (16) in the time domain is less apparent
than that of eq. (6).

Finally, we would like to comment that the basic
equation of motion, eq. (5), has appeared in a variety
of places [1-3,9—11] and is perhaps the simplest
possible way of describing motion with arbitrary de-
gree of coherence. Its solution presented in the simple
and practical form in this note should be of interest
not only in exciton transport where its use is already
being demonstrated, but in quite general contexts.

It is interesting to observe the connection between
our central result eq. (6) and

Pre) = [BE (e + 0] [1 + aPF(0)], (18)

which was given under general conditions as eq. (3.36)
in ref. [2]. Here Pé‘oh refers to the coherent propaga-
tor. The first term of eq. (6) is immediately identified
with its counterpart in eq. (18) and exactly forms the
right-hand side of eq. (7). The remaining part in eq.
(18), if iterated and summed exactly, produces the
second term in eq. (6) above for our one-dimensional
crystal, Such a simplification is particular to the one-
dimensional system considered here and does not ap-
pear possible in higher dimensions.
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