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Motion and Capture in the Presence of Cooperative
Trap Interactions II: Exact Calculations for
Perfect Absorbers in One Dimension'
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Exact calculations are presented for the survival fraction and other capture-
related observables in a problem involving migration on a one-dimensional
lattice containing perfectly absorbing traps whose placement within the crystal is
determined by explicit interactions among the trap molecules. These interac-
tions, which are treated exactly in a lattice-gas model, may be attractive, in
which case they lead to trap cluster formation and a reduction of the trapping
efficiency, or they may be repulsive thus leading to increased separation of the
trap molecules and an enhancement of the trapping process.

KEY WORDS: Master equation; trapping; Ising modeils; lattice gas; coop-
erative interactions.

1. INTRODUCTION

There has been considerable work done in recent years aimed at describing
the trapping of particles which move on a crystalline lattice,!'"'? as in, e.g.,
experiments involving sensitized luminescence. In all this work it is gener-
ally assumed that the placement of traps in the crystal is random. We have
recently begun to study the consequences of possible interactions among
the traps, which would tend to affect their placement in the crystal and
introduce correlations among the trap positions. We have introduced such
interactions in a phenomenological manner,"® and have also analyzed
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them exactly'¥ for a one-dimensional lattice-gas model. In these analyses
the transport and capture processes are treated in a way which, although
approximate,3 is valid for arbitrary dimensionality, degree of transport
coherence, and range of motion. It is, furthermore, capable of treating traps
which may not be perfect absorbers. In the present paper, however, we
restrict ourselves to perfectly absorbing traps and one-dimensional incoher-
ent motion. As with randomly placed traps, a simplification occurs when
this restriction is imposed, which makes it possible to obtain an exact
solution to the dynamical problem (1219 We are able, therefore, to use
the treatment of trap-trap interactions presented in Ref. 14, hereafter
referred to as I, to study exactly the problem of particles migrating on a
one-dimensional lattice in the presence of a nonrandom distribution of
perfectly absorbing, deep traps.* The present paper thus complements the
analyses presented in Refs. 13 and 14 and helps provide insight into the
manner in which phenomena such as trap cluster formation can affect the
proper interpretation of experimental results.

2. MODEL AND GENERAL SOLUTION

We assume that the transport particles in our model obey the following
evolution equation for the probability P, (1) that a particle occupies the
mth site in the crystal at time ¢

dP, (1
dt( ) _ PP, (1) + F[ Prar(1) + Proi(D)] = €nPu(®)  (2D)

Here, F is the hopping rate from site m to its neighbors and the quantities
c,, are random variables governing the decay of probability from the sites m
due to the presence of traps. Since we treat the traps as perfect absorbers,
the c,, take on the value zero when m is a host site and are infinite when it
is a trap. In the random case these occur with weights (1 — p) and p, the
host and trap concentrations, respectively. This result stems from the fact
that the probability for a given site being occupied by a trap molecule is
independent of the positions of the other traps. When interactions exist
between trap molecules, however, the result is not valid. Tt is this case that
we treat in this paper and in 1.

The feature of the problem of motion and trapping on a one-
dimensional lattice with perfectly absorbing traps which makes possible an

3 Although approximate for general trap interactions, the theory developed in Ref. 14 is exact
for periodically placed traps.

4 We use the term “deep” to refer to the absence of detrapping rather than to the infinite rate
associated with the trapping process itself (for which we reserve the term “perfectly
absorbing’). This is in contrast to the usage of, e.g., Ref. 11.
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exact solution!'"'>!% s that the traps divide the host sites into isolated
clusters. Any particle starting within such a host cluster is cut off from the
rest of the crystal. The survival fractions of host particles in the crystal
may, therefore, be simply expressed as an average over host clusters, viz.

n(t)= N2=lenN(t) (2.2)

in which w), is the probability that an arbitrary host site is part of a host
cluster of size N and the quantity n,(¢) is the survival fraction for one such
cluster with the initial condition that all sites of the cluster are populated
equally with probability 1/N. By a host cluster of size N we mean a group
of N adjacent host sites with a trap at each end.

With perfectly absorbing traps, a cluster of N host sites with a trap at
each end is dynamically equivalent to a ring containing one trap site and N
host sites. The latter problem may be solved® straightforwardly through,
e.g., the defect technique of Montroll'® resulting in

ﬁN(€)=l[1_1__“PLN+2} (2.3)

€ Nap(()N+l)

in which tildes denote Laplace transforms with Laplace variable €, and the
quantity ¢§V(z) is, for a ring of N host sites containing no traps, the
probability that a particle located initially at any site will be there at a time
¢ later. Of the several known forms of this quantity we use the compact

one,(s‘”‘”)

ey (e) = _tanh(€/2)_ / ) (24)
tanh(N§'/2)
in which cosh& =1+ ¢/2F.

It is clear from (2.2) that, with ny(¢) given by (2.3) and (2.4), we
require only the weights w,, in order to obtain an explicit solution for the
survival fraction. The evaluation of these quantities requires a knowledge of
the form of the trap—trap interaction. The description of this interaction in
terms of a lattice-gas model and the resulting calculation of the wy
comprise the next section.

3. CLUSTER PROBABILITIES IN THE LATTICE-GAS MODEL

When no interactions exist among the trap molecules, wy may be
expressed as the product of the independent probabilities for the interior
sites being occupied by host molecules, the probabilities for the two end
sites being occupied by traps, and the number of distinct host clusters of
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size N in which a specified host site may be located, i.e.,
wy = Np*(1—p)" ! (3.1

With (3.1), (2.3), and (2.4) substituted in (2.2) the result for the random
distribution of traps is obtained, viz.

_,[ tanh[(N + 1)¢'/2] — tanh(£'/2) ]]

AQ=1{l- PXaUe p)" tanh(¢'/2)
(3.2)

We show in Appendix A how this expression is equivalent to the result
obtained earlier by Movaghar et al*'V in their analysis of randomly placed
traps.

In the presence of interactions among the trap molecules, (3.1) no
longer gives the correct form for the cluster probabilities. These quantities
must, therefore, be calculated from our model of trap-trap interactions.
The approach that we adopt is detailed in L. Tt consists of using a lattice-gas
model in which there is an interaction energy associated with every pair of
trap molecules in the system, and of utilizing the well-known relationship
between lattice gases and the Ising model. The interaction energy is infinite
if two trap molecules occupy the same site, takes on the value —A if they
are nearest neighbors, and is zero otherwise. Clearly, positive values of A
correspond to attractive interactions and negative values correspond to
repulsive ones. To obtain expressions for the trapping observables it is
necessary to calculate n-point correlation functions in the trap system.
While two-point correlations suffice in the treatment of 1, the present
analysis requires certain higher-order correlation functions.

In the one-dimensional lattice gas, a given configuration of trap and
host sites can be represented by the set {0,,0,,03, . .. }, where the ¢, are
Ising model spin variables taking on the value 1 if site m is a trap site and
—1if it is a host. The probability for a particular configuration to occur is
given by Z ~'exp[— BU(0,,0,, - .. )] in which 8=1/kgT, kg is Boltz-
mann’s constant, T is the appropriate temperature, U(0,,6;,...) is the
energy associated with the configuration as determined by the interaction
energy described earlier, and Z is the partition function for the system,

Z=2exp[——BU(al,02,...)] (3.3)
{0}
If we let gy denote the probability that N + 2 adjacent sites in the crystal
make up a host cluster of size N, then

o= <(o|;— 1 )(|022— 1 )( |032— 1 ) . ,(lomé— 1|)(0N+;+ 1 )>

(3.4)
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The angular brackets denote expectation values taken over the density
matrix, i.e., if 4 is any function of the g,, then

(A>=Z"" {E}A(o,,oz, R, )exp[ —-BU(0,0;, ... )} (3.5)
In Appendix B it is shown that the expectation value (3.4) is given by
gy =(1=p)p’(1 = x)![1=p(1 - x)]""' (3.6)

The quantity x has been introduced in I as
[1—4p(1 - p)(1 - e—m)]‘” -1
x = iB 3.7
[1—4p(1 —p)(l—e "] +1

From the definitions of w, and gy it is clear that they are related through
w, = (1 — p)~'Ng, since (1 — p) is the probability that an arbitrary site is
occupied by a host molecule. We have, therefore, for the weights appearing
in (2.2),

wy = Np2(1 = x)’[1 - p(1 - x)]""" (3.8)

4. RESULTS AND DISCUSSION

Equation (3.8) is remarkable in its simplicity. Comparison with (3.1)
shows that the cluster probabilities in the presence of interactions among
trap molecules may be obtained from those which apply when no interac-
tions are present, simply by replacing the trap concentration p by an
effective concentration p, = p(1 — x). Moreover, this clearly holds for a// the
relevant trapping observables as well, since we see from (2.2) that the p
dependence of the survival fraction is contained entirely in the quantities
wy. After substitution into (2.2) we have, for the survival fraction in the
presence of trap interactions,

o tanh[(N + 1)§ /2] — tanh(¢'/2) H

=111- 3 p2(1-p)"" tanh(¢'/2)
4.1y

The effective concentration p, is plotted in Fig. 1 as a function of the
actual trap concentration for different values of the trap interaction param-
eter E = exp( BA). Note that the effective concentration is increased when
the trap interaction is repulsive (E < 1) and is decreased when the interac-
tion is attractive (£ > 1).

It should be clear from this discussion that the form of the decay of
the survival fraction is unchanged in the presence of trap interactions, but
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Fig. 1. Effective trap concentration p, as a function of the actual trap concentration p with
values of the trap interaction parameter £ as indicated.

that a rescaling of the concentration occurs. Thus the result n(7)~
exp[—(t/79)"/*] of Movaghar et al. (D where T, is an appropriate charac-
teristic time, continues to hold, but with a rescaled value of 7,. The
rescaling enhances the trapping process when repulsive interactions are
present (p, is increased), and inhibits the trapping process when attractive
interactions are present (p, is decreased). This is qualitatively as one would
expect since attractive interactions would lead to an increase in the average
size of trap clusters. For perfectly absorbing traps no interior members of a
trap cluster are ever involved in the trapping process. Hence the effective
number of traps actually capable of trapping goes down as the average trap
cluster size increases. It is also clear, therefore, why repulsive interactions
increase the trapping efficiency: they lead to a decrease in the average size
of trap clusters and an increase in the fraction of trap molecules which are
not interior members of trap clusters. This change in the trapping efficiency
with changing interaction strength has also been discussed in L.

In Figs. 2 and 3 this behavior is demonstrated in a numerical inver-
sion™® of (4.1) for two different trap concentrations. In Fig. 2p=10""
and in Fig. 3 p=0.5. The different curves in each figure correspond to
different values of the trap molecule interaction parameter E, the curves
with E = 1 describing the case of no interactions studied previously.( 11219
For the trap concentration p = 0.5 we note that as the interaction energy
increases to positive infinity (the limit of very strong repulsive interactions)



Motion and Capture in the Presence of Cooperative Trap Interactions 755

10

m
1A

00 - T
00 50 100

Ft /10

Fig. 2. Survival fraction n(¢) as a function of the dimensionless time Fz, with trap concentra-
tion p = 10~2 and values of the trap interaction parameter £ as indicated. Note that at this
concentration the curves corresponding to values of £ < | (repulsive interactions) are indistin-
guishable.
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Fig. 3. Survival fraction of particles n(¢) as a function of the dimensionless time Ft, with trap

concentration p = 0.5 and with values of the trap interaction parameter E as indicated. The
dashed curve is exponential and corresponds to the limiting value E = 0.
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the traps must occupy alternate positions within the lattice so as to avoid
being nearest neighbors. When this happens the largest host cluster is of
size one and the subsequent decay of the survival fraction is given by the
exponential n(?) = exp(— 2 F1), with each (isolated) host site decaying to the
two traps which are its neighbors. The dashed curve in Fig. 3 represents this
exponential decay and, indeed, one sees that as E approaches zero, the
curves describing the host decay do approach the exponential limit.

In exciton trapping experiments, €.g. sensitized luminescence, the
survival fraction is monitored through the detection of photons emitted by
the hosts or the traps as they decay radiatively to the ground state.
Radiative decay has not been included in (2.1) for reasons of simplicity and
also to make the analysis relevant to particles other than Frenkel excitons.
However, it has been shown clsewhere™® that such effects may be account-
ed for by adding the term P, (t)/7 to the left-hand side of (2.1), by
multiplying (2.2) by exp(—t/7), or by replacing € with €+ 1/7 in the
corresponding transformed expressions. When this is done, the host and
trap quantum yields ¢,; and ¢g, defined to be that fraction of the initial
excitation which decays radiatively from host and traps sites, respectively,
can be obtained without inversion from (4.1) through the relation

¢H=Lwdtig_—t)—e”’/*=%ﬁ(l) (42)

T

and by conservation of probability through ¢ =1 — ¢g4. Thus, for exam-
ple, we have the following explicit expression for ¢g:

s (1= p)"anh[(N + 1§/2]
bg= —pe+ P2 > “tanh(Z/2)

(43)

in which cosh& =1+ 1/2Fr. In Fig. 4 we present plots of ¢ as a function
of p with the same values of the parameter E as in Fig. 1.

Although the analysis of I has a greater range of applicability than the
present one because of its ability to treat arbitrary degree of coherence and
range in the motion and arbitrary capture rates, it involves an approxima-
tion procedure. On the other hand, the theory presented here, although
restricted to nearest-neighbor incoherent motion and to infinite capture
rates ¢, involves no approximations. It is therefore of interest to test the
validity of the limiting form of I which corresponds to the present analysis.
To this end we present Fig. 5, which shows a comparison of the guest yield
¢ as predicted by I and by the present treatment. The dashed curves in
Fig. 5 correspond to the limit ¢ — oo of Eqs. (1.6) and (3.22) of L. The solid
curves correspond to Eq. (4.3) of the present paper. The values of the
interaction parameter E are as indicated. We observe that the appropriate
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Fig. 4. Trap yield ¢ plotted against trap concentration with values of the trap interaction
parameter E as indicated. We have taken 7 = 102/ F. Note that the curves for values of
E < 0.1 are indistinguishable for this choice of 7.
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Fig. 5. Trap yield ¢ vs. trap concentration p as predicted by the theory of I (dashed curves)
and the theory of this paper (solid curves). Values of E are as indicated and 7 = 10°/F.
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limit of the theory contained in I is in reasonable quantitative and excellent
qualitative agreement with the exact results presented here.

The purpose of this paper has been to present the result of exact
calculations which include the effects of trap—trap interactions on the
observables related to the migration and trapping of excitations on a
one-dimensional lattice. We have shown how, for a simple lattice-gas model
of these interactions, the total intermolecular interaction may be accounted
for exactly by rescaling the trap concentration. It is hoped that calculations
of the sort presented here and in I will be of use in determining the
magnitude of effects such as trap cluster formation on capture phenomena.

APPENDIX A

In this appendix we wish to demonstrate the equivalence of the form
given in (3.2) for the survival fraction with that obtained by other
authors.'"" To accomplish this we first introducé the quantity A(e) =
exp(—¢') and reexpress the hyperbolic functions of (2.4) in terms of sums of
powers of h(e). We obtain after some rearrangement

22 2 (=" R -1
€ N1 (1=-h)(1+ RV

()= L - (A1)

Now, expanding the factor of (1 + A¥*') which appears in the denomina-
tor of the summation in (Al) as a geometric series we obtain
® o 2pPk*l(— l)k
f”(f)—1=22 1=~
k=0N=1
The sum over N may now easily be performed yielding

. 0 2p2h2k+1(_1)k
ei(e)—1=—
© ,20 [1-(1-p)n*][1 —(1—p)n**']

The summand may be reexpressed, however, by making use of the identity

(hN(k+l) - hNk)(l _p)N—l (A2)

(A3)

2h2k+1
[1=(1=pyr*][1-(1 —p)h*]
hk+l hk 2
N YL
_ h2k+2 _ th (A4)

[1=(=p)p*'] [1= (1= p)h*]’

Notice that the last two terms on the right-hand side (A4) become identical
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when k is replaced by & — 1 in the first of them. Because of the oscillating
factor of (—1)* which multiplies them, these two terms will cancel each
other when substituted into the sum (A3). The only contribution will come
from the unpaired k = 0 term, which has the value —1. Combining this
with the first term on the right-hand side of (A4) we obtain after some
straightforward algebra

~( i p2h2k(] _ h)2

n(e)=
o 1 - (1= p)h 1 - (1 - k']

which is identical to equation (6) of Ref. 11.

(A3)

APPENDIX B: EVALUATION OF CLUSTER PROBABILITIES

The one-dimensional lattice gas is equivalent to a one-dimensional
Ising model'® with configuration energy U(ay,0,, . . .) given by
n

n
U(013029"')=—Jzoi0i+1—820i (B1)
i=1 i=1
where o, , , = 0,. The quantity J is related to A by the relation 47 = A and
for a large system (n— o) the magnetization M is*”
M = sinh BB[sinh?8B + e~ *¥']""? (B2)

The equivalence M = 2p — 1 gives B as a function of p and A, the variables
of the lattice gas model. For the Ising model, the quantities gy can be
written

it O L Y [ G| R
(B3)

where Tr indicates a trace and the matrix P is given by

BU+E) R
P= (e -8 Z(J—B)) (B4)
e €

Equation (B3) can be evaluated exactly in the limit n > o0 yielding
gn = 4(1+ M1 = MY = x?[1=(1/2(1 =X+ M)] (BY)
in which

[1 _(1 __MZ)(I __e4BJ)]|/2_1

x = (B6)

[1-(1 - M- )] +1
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Substituﬁng A for 4/, and 2p — 1 for M in (BS) and (B6) gives (3.6) and

G

).
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