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Abstract—A method for recovering results valid near the limit of incoherent transport from corresponding
results at the limit of complete incoherence is applied to the calculation of the neutron scattering lineshape.
Lineshape formulae due to Kutner and Sosnowska for master equation transport on general non-Bravais
lattices are extended by means of this method to include the effects of small degrees of transport coherence.
The resulting lineshape is a sum of non-Lortenzian components. The effect of coherence on the width
functions of the multicomponent lineshape is illustrated.
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1. INTRODUCTION

In recent papers [1-3], the authors have studied the
effects which varied degrees of transport coherence
produce in the lineshapes encountered in quasielastic
neutron scattering. The mobile particles of principal
interest have been hydrogen nuclei in metal hydrides,
and attention has been given to motion in Bravais in-
terstice lattices. The coherence of the motion has been
treated in a unified way, and results have been obtained
for all degrees of coherence. The problem posed by the
non-Bravais interstice lattices of most real metal hy-
drides is considerably more complex than that here-
tofore considered. However, we may exploit one sim-
plification of the transport problem in these complex
lattices, which is the consequence of experimental
conditions: Experiments on «-phase metal hydrides
are limited to relatively high temperatures due to the
precipitation of the mobile a-hydrogen into ordered
phases which occurs at low temperatures. At the high
temperatures relevant to such experiments, transport
is expected to be nearly incoherent. Strong evidence
of coherence is expected at best at temperatures far
below those at which the neutron scattering technique
ceases to be practical. Thus, it is the neighborhood of
the incoherent limit which is most relevant to neutron
scattering experiments on hydrogen in the a-phase of
real metal hydrides. Rather than pursuing results for
the case of extended, three-dimensional non-Bravais
lattices affording the same generality as those of Refs.
[2] and [3] (which would be of little use because of
their complexity, as well as being irrelevant), we wish
to develop useful lineshape formulae valid near the
incoherent limit, where transport and observables sen-
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sitive to transport are only weakly influenced by the
residual coherence.

Since the temperatures in the scenarios we consider
are high, we will be unconcerned with the detailed bal-
ance symmetry of the scattering lineshape, and we will
further neglect Debye-Waller factors, for simplicity.
Moreover, we need not be concerned with the structure
of the full density matrix, since the lineshape contri-
butions of off-diagonal density matrix elements are
negligible at sufficiently high temperatures. We need
consider only the site-occupation probabilities, and will
base our transport analysis on the generalized master
equation for these probabilities [4, 5]

PL() = L de’ 2 {Wiha(t — P
— Wi (t — (YPL()}

in which subscript indices 1, n label unit cells and
superscript indices /7, j label inequivalent sites within a
unit cell. We shall find it convenient to consider also
an alternative memory kernel defined by the relations
Al = —Wi . (m #+ m) and AL, = 3 W,
o

Near the incoherent limit, a formalism based on mem-
ory functions simplifies due to the suppression of
memory function structure by bath interactions. The
coherent structure responsible for maintaining phase
relations becomes ineffectual due to smoothing and to
increasingly rapid decay. As the incoherent limit is ap-
proached, the memory functions become proportional
to delta functions in time, reducing the generalized
master equation to the simpler Pauli master equation.
Kenkre and Wong [6, 7] have approximated such
strongly decaying memory functions by taking the
Markoffian limit of the memory kernel
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W(r) — [J:O dt"W(t’)]é(t) (1.2)

and introducing a finite duration of memory by re-
placing 6(r) with a normalized exponential decay

W(t) ~ U:O dt"W(t’)]a expl—as).  (1.3)

In terms of Laplace transforms, denoted below by
tildes, this exponential approximation takes the form

W0

‘):V[e]z et+a’

(1.4

Caution must be used in applying the exponential
memory [6-10] which results, since the generalized
master equation with such a memory is closely related
to the telegrapher’s equation: The latter contains an
admixture of the wave equation, and so admits “prob-
abilities” which may exhibit negative excursions [11,
12]. Let us consider the scattering functions which fol-
low from such memories. Let us first consider the case
of the Pauli master equation for which W,,,[0] = Fyu.
For a Bravais lattice, the scattering function so obtained

is
L1 s
iw + {F(0) — F(k)} (45)

Sk, w) = i Re{

where F(k) is the spatial Fourier transform of the hop-
ping rates F,,,. The exponential memory generalization
may be introduced as above by substituting {F(0)
— F(k)}aliw + ) ! for {F(0) — F(k)}

1 (iw + @)
Stk, w) = Re{a{F(O) — F(k)} + iw(iw + ‘1)}

! {F(0) — Hk)}o?
©x [af{F0) — Fk)} — o’ + «?a®

(1.6)

This result is identical to its correspondent obtained
near the incoherent limit directly from the stochastic
Liouville equation calculation for a linear chain
presented in Ref. [2). The equivalence is established
through the identification of 2a{F(0) — F(k)} with
V(k)%

The memory function obtained exactly from the
stochastic Liouville equation can be approximated near
its incoherent limit in a direct and particularly simple
way (see, e.g., Refs. [11] and [13]). Since the structure
of the coherent memory function occurs on the time
scale of I"~! while the exponential envelope decays on
the time scale o, the memory function is completely
dominated by the exponential envelope when o/ V 3>
1. In this nearly incoherent limit we may write

exp[—ar] A4k, §) ~ exp[—af] Ak, 0) (1.7)

with the result for the scattering function (again for a
Bravais lattice)

1 { Ak, 0)a

Sk @) = x (AUK, 0) — *) + ’a?

} . (1.8)
We therefore find, comparing (1.8) and (1.6), that the
results which are valid in the neighborhood of the in-
coherent limit can be recovered from solutions of the
master equation, i.e, from results which describe the
totally incoherent limit.

2. NON-BRAVAIS LATTICES

Kutner and Sosnowska [14, 15] have obtained for-
mulae for neutron scattering lineshapes for particles
in general non-Bravais lattices when transport is gov-
erned by the master equation. The lineshapes consist
of a number of commonly centered Lorentzians, the
number at a general point in the Brillouin zone being
the same as the number p of inequivalent sites in a
primitive cell. Since we have neglected Debye-Waller
factors and are considering high temperatures, their
result may be expressed

Sk, w) = i > c,»{—ﬁ&} @.1)

S @ A+ ud(k)
in which (k) is the ith eigenvalue of the jump matrix
J(k) and ¢; is the equilibrium population of the ith

sublattice. The elements of the jump matrix are

z F?rlmexr)[_iq'(rm —Ip + Ri - R])
m

Jiy(k) = IEN
z FngXp[_l.(]'(l'm - rn) - z F‘r:'m
i=j (2.2)

where F%, is the master equation hopping rate from
the jth site in the ath cell to the ith site in the mth cell.
The corresponding result for a generalized master
equation is immediate:

> Wi, [elexp[—ik-(t, — 1, + R, — R)
. [ #J
ol 0 = > Wi, [e]lexp[—ik - (T — F)
— Wil i=J. (2.3)

The general case is intractable since the memory func-
tions are known only for simple “jump” geometries
in systems of low dimensionality. However, the ap-
proximate memory (1.4) belongs to the class of sepa-
rable memories, viz., memories such that
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WD) = HOF V. 2.4
A separable memory results in a time dependent “jump
matrix” which is also separable, and equal to ¢(£)J(k).
The separability of the jump matrix allows an exact
generalization of the master equation scattering func-
tion to be obtained:

1 r 1
S(k, w) . ; z C,-Re{m} . (2.5)

=1

In the exponential memory approximation, we have
the result

Sk, w) = % G

1
T =1

2
{ plle 2} .26
(pi(k)e — @) + o'a
This scattering function is a superposition of compo-
nent lines having the same form, differing only in the
detail of their parametric dependence on momentum
transfer. Each has the same form as that which obtains
for a two-site system. It is simple to understand why
this should be so. The coherent memory for a pair of
sites is simply 2 V2 if Vis the tunneling matrix element;
that is, W4(r) is constant in time. Any introduction of
decay into the evolution of a two-site system therefore
results in a memory which is trivially separable: W(7)
= WY0)¢(r). Since a separable memory results in a
separable jump matrix, the spatial structure which dis-
tinguishes the extended lattice from the two-state sys-
tem is transformed into the k-dependence of the ei-
genvalues of the Markoffian jump matrix. The com-
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Fig. . Half-width at half-maximum for a linear chain with
nearest neighbor tunneling interactions. Curve () results in
the incoherent limit, and is equivalent to the corresponding
master equation result. Curve (c) results when 2V/a = 0.5
and is the case of marginal validity, since V(k)/a = 1 at the
zone boundary while our approach assumes this parameter
to be small. All greater degrees of incoherence result in half-
width curves which fall between (@) and (c). Representative
of these is curve (b), for which 2V/a = 0.1.
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Fig. 2. Face-centered cubic unit cell showing lattice sites (O),

octahedral interstices (O), tetrahedral interstices (@), and jump

vectors (—) between nearest neighbors in the octahedral-tet-

rahedral lattice. Tetrahedral interstices having the same label
are of the same symmetry.

posite lineshape is indistinguishable from that of a k-
dependent superposition of p-dimers.

In the present case the lineshape for a given k is
rather simple, particularly since we must confine our-
selves to the nearly incoherent regime where we expect
the lineshape to be very nearly a sum of Lorentzians.
The dependence of the lineshape on momentum
transfer is considerably more complex, as a result of
the multiplicity of eigenvalues and their distinct spatial
structure, and is usually studied in the behavior of the
half-width at half-maximum (HWHM).

In the incoherent limit of transport on a Bravais
lattice, the lineshape is Lorentzian with a HWHM
which vanishes at k = 0 and increases toward the edge
of the Brillouin zone. Small degrees of coherence cause
the HWHM to exceed that found in the incoherent
limit. The excess width which may be ascribed to co-
herence varies with respect to k. The neutron scattering
technique probes transport properties on the extrinsic
length scale |k|™! while the transport properties them-
selves depend on intrinsic length scales, e.g. through
the relative values of the mean free path and the di-
mensions of a unit cell. The extrinsic coherence pa-
rameter (~ V(k)/a) is generally an increasing function
of k-a, reflecting the greater sensitivity of the probe
to coherent processes at high momentum transfers.
This is exemplified in Fig. 1|, where we show the
HWHM which results for transport on a linear chain
with nearest neighbor tunneling interactions. This re-
sult may be obtained straightforwardly from eqn (2.6)
(which consists of a single compound in this case) or
from the exact calculation in Ref. [2]. The curve (a)
represents the HWHM for purely incoherent transport,
viz. transport which is incoherent on all length scales.
Curves (5) and (¢) result when the degree of transport
coherence is nonvanishing. The convergence of all
curves in the neighborhood of k = 0 reflects the fact
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that in each case, transport is incoherent over mac-
roscopic length scales. On the other hand, the distinct
nature of the several widths at large momentum trans-
fers reflects the coherence of transport over length scales
accessible to the experimental probe.

The corresponding result for a non-Bravais lattice
is complicated by the fact that the HWHM contains a
mixture of behaviors due to the multiplicity of eigen-
values, which generally possess distinct k dependences.
As an example of results which follow from the present
approach, we consider nearly incoherent transport
among the tetrahedral (¢) and octahedral (o) interstices
of and f.c.c. lattice. We have calculated width functions
for the same case as presented in reference [14], viz.
we have considered only the shortest jump path (o-t-
0-1-0-) to contribute. For simplicity, we neglect any
preferred occupancy of any class of sites (¢; = 1). The
jump vectors are shown in Fig. 2, and in Fig. 3 we
show the HWHM which follows from eqn (2.6) for
the principal crystallographic directions. The conse-
quences of small degrees of coherence are seen to be
qualitatively identical to those which result in the case
of Bravais lattices.

In these calculations care was taken to remain near
the incoherent limit in each case. The multicomponent
lineshape (2.6) is an asymptotic result, and may display
suggestive but unsupportable structure when the degree
of coherence becomes too large. Specifically, the line-
shape develops side peaks as the degree of coherence
is increased arbitrarily. Such side peaks would normally
be indicative of tunneling states; however, in obtaining
the asymptotic lineshape the structure of the original
density of states has been lost. The development of
side peaks of any kind is spurious, since our approach
is sensitive only to the existence of coherence, and not
the structure of the evolution which it characterizes.
In the results presented in Fig. 3, the degrees of co-
herence considered were sufficiently small that the
broadest component of each multicomponent line re-
mained singly peaked.

While we have used a ¢(f) which was exponential,
the method may be applied equally well to nonexpo-
nential ¢(¢) which decay sufficiently rapidly. While our
intent in this paper has been to consider the influence
of tunneling interactions on lineshapes, the well-known
equivalence between generalized master equations and
continuous time random walk equations may be used
to extend applications of the method to transport
problems involving a variety of random processes [5,
16]. The existence of this avenue of extension under-
scores the caution of the preceding paragraph that the
method is sensitive primarily to the finite duration of
memory. It is entirely possible for the same asymptotic
lineshape to be consistent both with transport through
quantum mechanisms and purely stochastic processes.
Coherence in either case is a quantifiable attribute of
transport. The nearly Lorentzian nature of lineshapes
which result for most metal hydrides suggests that the
mildly generalized lineshapes such as (2.5) or (2.6)
should provide adequate means of obtaining a measure
of coherence from neutron scattering experiments.
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Fig. 3. Half-widths at half-maximum evaluated from egn (2.6)
for the principal crystallographic directions in an f.c.c. lattice
(3.1: [111], 3.2: [110], 3.3: [100]). Jumps occur between oc-
tahedral and tetrahedral interstices only, and all jump times
have been taken to be identical (7, = 7, = 7). Curves display
the effect of small degrees of coherence on linewidths. Param-
eter values: (a) ar = 10.0, (b) ar = 25.0, (¢) ar = 100.0, (d)
ar = o,

-
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