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) i Communicated by A.R. Bishop
- the sym-
Iasb)- The
fton {9] The initial state analysis of the evolution of a nonlinear degenerate dimer shows that. in addition to the self-irapping transition,
a new transition occurs while the particle is in the trapped region. This transition can be understood in part in tesms of Lhe
y pehavior of a linear nondegenerate dimer, and is intimately related to the stationary states of the nonlinear dimer.

: 7.8, Lifor The discrete nonlinear Schridinger equation “amplitude transition” that happens while the par-
- cating the [1-61, which describes the dynamics of quasiparti- ticle is in the trapped region. It is characterized by
: BO equa- cles in several nonlinear media, is a decrease in the amplitude of the (trapped) motion
| tional Sci- . . until it becomes zero and a subsequent increase but
L lde/dt-: Z ancn -X I le 2Cm s (1 ) : : :
[ una. " with opposite sign that corresponds to a reversal of

where ¢,,, is the probability amplitude to find the par-
ticle at site m, V,,,, is the intersite matrix element and
¥ is the nonlinearity parameter that describes an en-

(1981) 341. ergy lowering of the particle when at site m due to
491 (1982) . . .
polaronic or other nonlinear effects. The equation
h. 68 (1983) 1‘ was recently solved [2] for a system involving two
| . identical molecules, i.e. a dimer, and the conse-
[ es, Vol. 26.

quences of the nonlinear evolution in experimentally
observable quantities such as the neutron scattering
m and sofi function were studied [3]. The inital condition ex-
). ! plored in these studies was that of extreme initial lo-
10 29 (1980) calization, i.e. one wherein the particle is initially

l entirely on one of the two sites of the dimer. In the
9;7967)9‘}5913{3_ r present paper we discuss the motion of the particle
. | in the more general case of arbitrary initial place-
: ¢ ment. We show that, as the nonlinearity and the ini-

: tial conditions are varied, the particle undergoes two
,  transitions. One of these is the “frequency transi-
i+ tion”, studied in ref. [2], that occurs when the fre-
quency of the intersite oscillations becomes zero and
the particle gets self-trapped. The other is a new

sectral trans-
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the phase of the evolution. This new transition can
be understood in terms of the behavior of a lirear
nondegenerate dimer, is intimately related to the
analysis of the stationary states of ref. [ 11, and is the
primary content of this note.

The general solution for the probability difference
P(1)=p,, (1) —p22(t) arising from (1) for a dimer of
sites | and 2 can be expressed [2,3] in terms of the
jacobian elliptic functions ¢n and dn as

p{1)=Cen[(Cx/2k}(1—16) 1 k]
= Cdn[(Cr/2)(1—15) | 1/k] . (2)

General expressions for C, 1y and k may be found in
ref. [2]. Here we will assume (dp/dt)o=0. This is
equivalent 1o placing the dimer initially in 2 pure state
characterized by real off-diagonal matrix elements of
the density matrix p. The solution(2) then becomes

p(1) =po en{poxt/2k| k) =po dnlpoxt/2ititky,,  (3)

P kipd

= T+ 2k’ )

Do and ry being the initial values of p and p,:+p)2,
respectively, and &, being the nonlinearity ratio /4 V.
The initial (real)} amplitudes ¢,(0) and ¢.{0) can
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either have the same sign or apposite signs. In the
former case. ro= + {1 —pi)"" whereas. in the latter.
ra= — (1 —pg)'’". We consider these cases separately.

Case {(I): rg=+{1-p3)"". Eq. (4) shows that,
upon varying ko (i.e. x/41") from 0 (linear dimer) 1o
the value k§=[1+ (1 —pd)'"*)/pd, the elliptic mod-
wlus k varies from 0 to 1. The sysiem execuies com-
plete oscillations between the two dimer sites. The
motion is appropriately described by the cn function
with decreasing frequency as ky increases, When A
attains the critical value £§, k=1, the frequency of
oscillation becomes zerc and the time evolution is
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Fig. 1. r,>0: In (2} the elliptic parameter k*is plotted as a func-
tion of ky=x/4 ¥ for py=1 (full line) and 0.8 (dotied line}. The
bullet (@} shows the position of the self-trapping transition. In
(b} the time evolution of the probability difference p(¢) is ploi-
led as a function of the lime for p,=0.8 and for different values
of k2 2.3 (dashed line). 2.5 (fuil line) and 2.7 (dotted linc).
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given by p(1)=py sech(poxt/2). As &y increases
yond k§, the value of k becomes larger than |, ang
the particle finds itself trapped on one of the two siteg
of the dimer. The evolution is then described by the
dn function.

While this behavior shows the “frequency trapgj.
tion™ as in the analysis of Kenkre and Campbel] 2],
we see here how the amount of nonlinearity neges.

“sary for the self-trapping transition to occur varjeg

with the initial condition. If initially the particle i
completely localized (py=1), then k§=1, if it i

completely delocalized (po=0), &f =50. In the latter

case, self-trapping cannot occur. Furthermore, the
more localized the particle 1s initially, the smaller is
the degree of nonlinearity required to self-trap the
particle. The explicit relation of y and the initial con-
ditions at the transition is given by (4) on putting
k=1.

In fig. la, we plot the elliptic parameter k% as a
function of x/41", In fig. 1b, we plat the actual time
evolution for several values of /4 F. The transition
from free to self-trapped motion (cn to dn) is clearly
visible.

Case (11} ro= — (1 —p3) ', This case is physically
more interesting since it describes an entirely new
behavior for the dimer while in the trapped regicn.
The critical value k§ of kg for which k=1 is now
[1—(1—p#)')/pi. As with the previous case, while
k, remains smaller than k§, the elliptic modulus is
less than | and the particle executes periodic motion:
p(1) oscillates between py and —p, following the ¢n
function. When /4 attains the critical value &§ the
self-trapping transition occurs, and for further in-
crease of kg, the particle is trapped {dn evolution).
Unlike case (I), we see here, however, that a further
increase in the nonlinearity y can make
ko=3{1 —p§)~V* which resuits in k becoming infin-
nite. For this choice of the degree of nonlinearity and
initial conditions the system finds itself initially ir
one of its stationary states [1,3.7]. The probability
of occupation of the sites is then clearly time
independent.

A further increase of &, makes &2 negative; upod
applying the imaginary argument transformation [8]
to'the cn function in (3) we get

p(1) =ponel pox /2 1K) 1 (L+ 16712 (s}

Since-the modulus of the nc function is greater than
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ig. 2. ry<0: In {a) the elliptic parameter k2 is plotted as a func-
fon of ky=x/4V for py=0.8 (full line) and 0.5 (dashed line),
The bullet ( o ) shows when the seif-trapping transition occurs. In
b} po=0.8 and the values of k; are; (a) 0.625, self-trapping
ranisition, (b) (.7, the particle is trapped (dn-evolution). (¢)
833, amplitude transition; the system occupies the stable sta-

dn evolution). onary state, (d) 0.9 and (e) £.0 (trapped-nd).

1 -, that a forther
; can .make for all these possible values of {k}, we now apply
| recomung mﬁn(; Ye reciprocal modulus transformation [8] to the ne
| onlinearity and inction and finally arrive at the following expres-
self initially

Y on for the time evolution:
“he probability

clearly time- ()=p,

negative; upor Xnd[pox(1+|k2|)”3z/2|k||(1+Ik2!)—”2]. (6)
sformation [8] While the particle continues to be trapped, the in-
case of ky beyond §(1—p3)~'"* causes the elliptic
rameter k2 to increase to maximurm whose value
=P3(1—p2)-" and then to decrease slowly to —co
shown in fig. 2a. The time evolution as given by

)

is greater thalt
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(6) is plotted in fig. 2b. Then cn—dn-»nd transi-
tions are displayed clearly,

We thus see that in case (II) an “amplitude” tran-
sition occurs on varying the degree of nonlinearity
which is in addition to the “frequency’™ transition
discussed in ref. [2]. The transition occurs in the self-
trapped region of the nonlinear dimer and we have
used the term “amplitude” transition to emphasize
the fact that it entails the reduction of the amplitude
of motion at the transition and its change in sign
across it. The source of this additional transition can
be understood through a comparison of the nonlin-
ear dimer, for which the nonlinearity y introduces an
effective energy mismatch while in the trapped re-
gion [2], with the linear but nondegenerate dimer.
For the latter, the difference in the probability of oc-
cupation of the two sites is given by:

p(8)=(1/6%) [, cos{2Vdt)+c,] , (7)
e =po+(di2V)ry, (8)

the quantities 6, ¢, and 4 being c,=(4/2V)
X[po(4/2V) ~ry], =1+ (4/2V)*]"? and the en-
ergy difference between the two sites respectively.
Clearly for the value 4/2V= ~DPolro=po/ {1 —p3)'"2,
¢ =0, p(t) becomes equal to Do and the linear non-
degenerate dimer is placed in one of its eigenstates.
Further increase of 4721 changes the sign of ¢, and
the motion reverses its phase, We note that a similar
situation occurs and in the case of the nonlinear di-
mer where one of the stationary states involves a
probability difference between the two sites, in sharp
contrast to the linear (degenerate) case. The com-
plete set of stationary states of the nonlinear dimer
can be easily seen: one for po=0, and ro=+1 and the
other for py=0, ro=— 1 while X<2V. When y>2V
the stable stationary state can be reached for
Fo=—1/2ks=2V7y and consequently for
po=[1-(2V1%)2)"2 [1,7].

The analysis that we presented for the initial con-
dition dependence of the evolution of the nonlinear
degenerate dimer proves itself extremely relevant in
the case of a class of experiments that involve illu-
mination of chemical solutions with linearly polar-
ized light and the subsequent study of the fluo-
rescence ernission from the molecular aggregates that
constitute the solution, In fact, as we will show in a
forthcoming paper [9], the fluorescence depolari-
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zation experiments constitute a direct probe in the
space defined through the different initial density
matrix elements of the systermn and consequently
identify an experimental domain where alt the above
described behavior can be directly tested.

We would like to thank Dr. David Campbeli for
helpful conversations.
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