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The effects of dissipation on the transport of quasiparticles obeying the nonlinear discrete
Schrodinger equation are studied. Dissipation is introduced via the standard stochastic Liouville
equation and, for a molecular dimer, a closed integro-differential equation is derived for the time
dependence of the probability difference at the two molecular sites. The equation is solved numeri-
cally in the general case and analytically in a certain limit involving weak nonlinearity and damping,
and the solutions are used to describe the scattering spectrum. The integrability of the equations of
motion is investigated and it is shown that the equations of motion do not possess the Painlevé

property.

I. INTRODUCTION AND THE
INTEGRO-DIFFERENTIAL EQUATION

In the present paper we address the effects of the inter-
play of dissipation with transport nonlinearity. The
former will be introduced via the standard stochastic
Liouville equation in the manner shown below. The
latter is characterized by the nonlinear discrete
Schrodinger equation introduced by Davydov! in his
studies of quasiparticle motion in biological systems, and
has received a great deal of attention in recent times.? 8
It has the form
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where c,, is the probability amplitude for a given excita-
tion to be found at the site m of a crystal or an aggregate,
E,, denotes the local energy at site m, V,,, is the intersite
matrix element between sites m and n, and X is a quantity
that is directly related to the coupling of the excitation
with the vibrational modes of the system. When X =0,
Eq. (1.1) reduces to the usual Schrodinger equation ex-
panded in the Wannier basis under the tight-binding ap-
proximation. When X540 the nonlinear term introduces
an effective lowering of the local energy at site m. This
has the effect of altering the coherent features of the
quasiparticle motion in a drastic fashion, e.g., it can lead
to the self-trapping of the quasiparticle.

It is straightforward to show®® that Eq. (1.1) results in
the following Liouville~von Neumann equation for the
density matrix p:
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where p,,, are the elements of the density matrix in the
site basis. The standard procedure’~!* of introducing
dissipation into the Liouville—von Neumann equation is
to include terms which cause a decay of the off-diagonal
elements of the density matrix in a suitable representa-
tion. If we apply that procedure to Eq. (1.2) we obtain
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where a describes the rate of destruction of the off-
diagonal elements of the density matrix. It is also possi-
ble to look upon a as the scattering rate of a quasi-
momentum state in the band of the quasiparticle.

We now consider a degenerate molecular dimer, i.e., a
system in which the quasiparticle moves between two
sites with identical energies which can be set to zero
without any loss of generality. We take m,n=1,2 and
V,,=V,, =V and obtain the following set of equations:

i’j_lpn=—V(P12”P21) ; (1.4a)
if—tpn.c V(pra—par) » (1.4b)
i%P12= —Vipn—pn)—Xpn—pnlpn—iap,, (l.4c)
ig?Pzr——V(Pn*P22)+X(P11“P22)P21—iaP21 . (1.4d)

Our aim is to derive from Eq. (1.4) a single equation for
the evolution of the difference in the occupation probabil-
ities of the two sites. We, therefore, define a new set of
variables p,q,r,s which are linear combinations of the
old variables and equal to py—pPP12—P21s
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P12+P21,P11+P2as TEspectively. The system of Egs. (1.4)
can then be written as

d .

dt _12Vq ’ (I.Sa)
d . .
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and reduced further through the elimination of ¢ to yield
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Finally, by solving Eq. (1.6b) formally, and substituting
into Eq. (1.6a) we arrive at the following equation for
plt):
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where p,,r, are the initial values of p,r, respectively.

Equation (1.7) is the point of departure for our analysis
in what follows. It is a closed, nonlinear, integro-
differential equation for p(z), the difference in the occu-
pation probabilities of the two sites of our dimer system.
To the extent that our use of the stochastic Liouville
equation as a procedure to introduce dissipation is a valid
one, Eq. (1.7) describes the dynamics of the dimer in the
simultaneous presence of nonlinearity and damping. We
observe that when a=X =0 the equation for a harmonic
oscillator results, whereas for as£0 and X =0 we get an
equation for a damped harmonic (linear) oscillator. Fi-
nally, for X540 and a=0, we obtain the equation for the
nonlinear degenerate dimer, first studied by Kenkre and
Campbell.?

The rest of the paper is divided as follows. In Sec. II
Eq. (1.7) is studied analytically as well as numerically.
Analytic solutions are possible only if some simplifying
assumptions concerning the system parameters are made.
When these assumptions are not valid, numerical analysis
allows us to study the effects of the interplay between
damping and nonlinearity in the transfer of the particle
moving between the two sites. Such motion may be
probed experimentally through scattering observations
involving probe particles such as neutrons. In Sec. III
we, therefore, evaluate the scattering spectrum of the
nonlinear dimer with damping and comment on its rela-
tion to spectra of both the linear dimer with disspation as
well as that of the nonlinear dimer without dissipation.

During the last ten years, several authors'*~!" have
noted an apparent connection between integrable, non-
linear evolution equations and Painlevé property. This,
therefore, seemed to be an appropriate tool for studying

the dimer equations. This was particularly so since they
can be solved by Jacobi elliptic functions when one of the
parameters vanishes. (The Jacobi elliptic functions may
be considered as degenerate cases of the Painlevé tran-
scedents,'® which certainly have the Painlevé property.)
Therefore, in Sec. IV we will perform a Painlevé analysis
of our equations for the dimer case, following the ap-
proach of Ref. 14. Unfortunately, we will show that the
equations are not of the Painlevé type unless the
aforementioned parameter vanishes, in which case the
general solution is already known.*®

II. ANALYTIC AND NUMERICAL SOLUTIONS

It is possible to write Eq. (1.7) as a nonlinear
differential equation of the third order.!® Here, however,
we will directly use Eq. (1.7) and first show that it can be
solved through an approximate but analytical procedure
for a certain range of the parameters X and a. Let us as-
sume that X?a is small enough so that the integral term
on the right-hand side of the equation does not contribute
significantly in the time evolution. In addition, if a is
chosen to be small, the exponential terms on the left-hand
side of Eq. (1.7) can be set equal to unity, i.e., e "*=~1, a
condition clearly valid for times shorter than or on the
order of 1/a. With these constraints on the parameters X
and a, Eq. (1.7) reduces to

2
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If p (¢) is interpreted as the position of a classical parti-
cle at time ¢, Eq. (2.1) then represents the time evolution
for the particle, constrained to move in a symmetric
double-well potential, under the simultaneous action of
an external dissipative force proportional to the particle
velocity.

Equation (2.1) can be integrated exactly for a certain
range of values of X and . We can eliminate the term in-
volving the first derivative of p (¢) through a simultaneous
transformation of both the dependent and independent
variables p and ¢ to y and z, respectively:

p=—vzy

and (2.2)
dz_
i Vo

where y is an arbitrary parameter which remains to be
determined. The transformation given in Eq. (2.2) is
equivalent to

p=e "

and (2.3)
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Equation (2.1a) can be written equivalently in terms of
the new set of variables y and z:

d? dy
2,28 ay _ 2 2 3
Yz 52 (a By)yzdz (A +ay—yty —By%
(2.4)
The choice
a
Y= 3 (2.5)

eliminates the first-derivative term in Eq. (2.4). If, in ad-
dition, we introduce the constraint

2 4

a
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the differential equation (2.4) then reduces to
dzy 3
—5 +By’= (2.7)
dz? Y

This last equation can be solved using standard methods
from the theory of elliptic integrals.?®?! We obtain
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In Eq. (2.8) cn(u | k) denotes the Jacoblan elliptic cosine

of argument ¥ and modulus k with cn™
the inverse of that function.

We note that in deriving the solution given by Eq. (2.8)
the simplifing assumption was made, with no loss of gen-
erality, that the off-diagonal matrix elements of the initial
density matrix are real; this is equivalent to taking
(dp /dt), _o=0. Using properties of elliptic functions,?*?!
we can show that the solution given in Eq. (2.8) satisfies
this condition. We should also point out that the exact
solution (2.8) is valid only for those values of a and X
which satisfy the constraint of Eq. (2.8d), which also de-
pends on V. If we fix the value of the latter, i.e., assume
that the value of the resonant interaction is given, we can
rewrite Eq. (2.8d) (when r,=0 and py=1) as

u | k) denoting

2

(a/2v)=2

1-2
2

X
v
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For real a, the necessary condition for which Eq. (2.9) is
true, i.e., X /4V < V'2/2, is satisfied since Eq. (2.9) is valid
for small values of X.

We now turn to the numerical solutions of the equa-
tions governing the evolution of the probability
difference. Figure 1 shows a comparison between the an-
alytic solution (2.8) of the approximate equation (2.1) and
the numerical solution of the original equation (1.7) for
several values of a/2V and X /4V. We observe reason-
ably good agreement between the two solutions. In Fig. 2
we present the numerical solution of the original equation
(1.7) for various values of nonlinearity and damping. In
Fig. 2(a) we fix the amount of dissipation (a¢/2¥V=0.1)
and plot the probability difference for various values of
the nonlinearity parameter. The initial conditions chosen
correspond to placing the particle initially in one of the
sites of the dimer, i.e., p,=1 and r,=0.

Figure 2(a) shows the tendency of the dimer to exhibit
the self-trapping transition.>*® This is indicated by the
fact that, provided the nonlinearity parameter is large
enough, the initial oscillations of p (¢) are not symmetric
about the origin. However, dissipation causes the system
to reach a symmetric steady state for long times. The
probability is equalized over the two sites, irrespective of
the initial conditions, i.e., as t — o, p(#)—0. While Fig.
2(a) shows the effects of varying the amount of nonlinear-
ity for a given amount of damping, Figs. 2(b) and 2(c)
show the effect of varying the degree of damping. The
“free” region (cn evolution) is represented in Fig. 2(b) and
the “self-trapping” region (dn evolution) in Fig. 2(c). In
all cases we obtain the expected behavior: the damping
agency forces the asymptotic equalization of the proba-
bilities of the two sites. As is well known,'®!1!3 this be-
havior is expected since the presence of a single decay
rate a for all elements of the density matrix in the sto-
chastic Liouville equation make the latter only a high-
temperature instrument.
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FIG. 1. Probability difference p(t) plotted as a function of

2Vt. In curves a and b the values of a/2¥ and X /4V are equal
to 0.01 and 0.707, respectively, whereas in curves ¢ and d the
corresponding values are 0.9 and 0.640. Curves a and c¢
represent the numerical solution of Eq. (1.7), whereas b and d
represent the exact solution of the approximate equation (2.1a).
For initial conditions we chose p, =1 and r,=0; the values of
and X used satisfy the constraint given by Eq. (2.8d).
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III. CALCULATIONS OF THE SPECTRUM
OF THE SCATTERING FUNCTION

In a scattering experiment probe particles such as neu-
trons exchange momentum ¢ and energy o (in units of #)
with the moving particles. The observable of interest, the
quasielastic scattering function S(g,®), can be expressed
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FIG. 2. Numerical solution of Eq. (1.7) presented for the
probability difference p(t) as a function of time for several
values of nonlinearity and damping. In (a) a/2¥V=0.1 and
X /4V takes the values 0.95 (curve a), 1.1 (curve b), and 2.0
(curve ¢). In (b) X/4V=0.99 and a/4V takes the values 0.01
(curve a), 0.1 (curve b), 1.0 (curve ¢), and 10.0 (curve d). In (c)
we have X/4V=1.01 and a/2V assumes the values 0.01 (curve
a), 0.1 (curve b), 1.0 (curve c¢), and 10.0 (curve d).
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in terms of the self-correlation function /(q,) through

the relations®>?3

1 += — i@
S(q,w)za;fw dte '“I(g,t), 3.1
1(g,t)=(Tre PH)=1Tre ~BHpiaxgitHo —igxo —itH (3.2)

At high temperatures, the intermediate function 1 (gq,?)
reduces to the probability propagator for the motion of
the particle from site O at t=0 to a site m at time . 13,24.25
For a dimer, this propagator is nothing but p(¢), i.e., the
difference in the probability of occupation of the two sites
of the dimer.'>* In this case, the quasielastic part of the
scattering function S(w) containing all the essential in-
formation on the scattering process is given by

v 1 + o e
S()=S(mo)=>-[""dte""pw), (3.3)

where p (1) is equal to the difference of the probabilities of
occupation of the two sites of the dimer.

The neutron scattering spectrum for the nonlinear di-
mer in the absence of damping has been analyzed in Ref.
4. It was shown there that for finite nonlinearity X the
line shape consists of an infinite series of & functions be-
fore and after the self-trapping transition while, at the
transition, they collapse into a continuous curve which
has the functional form of a hyperbolic secant. Also, on
increasing the nonlinearity, the discrete spectrum
changes in a way reminiscent of the behavior of the linear
damped dimer, which exhibits line broadening and
motional narrowing.

For the damped nonlinear dimer under study in the
present paper we present analytic and numerical results
for the scattering function in correspondence with the an-
alytic solutions of the approximate form and the numeri-
cal solutions of the exact form of the p(t) equation,
which we have carried out in Sec. II. A Fourier expan-
sion of the cn function in terms of trigonometric cosines
leads from the approximate equation (2.8) to
-1

p(1)= —’é- %mz:osech m -+ 2L, G
— :xdt t —{(a/3n 2 1 U ,
1, fo cos(wt)e cos [(2m + )2 %
(3.4b)
u =%(xc>”2(e““””~1>+¢o , (3.4¢)

where K =K (1/V'2) is the complete elliptic integral of
the first kind with modulus 1/V/2. Equation (3.4) differs
from the equation for the scattering spectrum of the non-
linear dimer given earlier® in the absence of damping in
that, for the latter case, the integrals with I,, in Eq. (3.4b)
are 8 functions. For small damping, the discrete & func-
tions broaden into Lorentzians.

To analyze the scattering function for arbitrary values
of X and a we carry out numerical calculations of S(w).
Figure 3(a) shows the scattering function S (w) as a func-
tion of the frequency w for small values of nonlinearity,
whereas Fig. 3(b) shows S(w) for large values of non-
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linearity at which the undamped dimer would be close to
the self-trapping transition (but still in the free region).
The signature of the nonlinearity, viz., the multiplicity of
the scattering peaks,* is visible for small values of damp-
ing. This disappears, though, when large values of damp-
ing broaden the peaks, causing them to lose their identity
and to coalesce into a central line at w=0. The self-
trapping region is exhibited in Figs. 3(c) and 3(d). Thus
the features observed are similar to those of the un-
damped nonlinear dimer* except for the broadening (ab-
sence of 8 functions).

IV. PAINLEVE ANALYSIS

The Painlevé analysis of a nonlinear differential equa-
tion (or a system) is associated with the study of the
singularity content of their solutions. A differential equa-
tion is said to possess the Painlevé property, or to be of
P-type, if its solutions, viewed as functions of a complex
variable, contain no movable singularities other than
poles, i.e., if it has no movable branch points or essential
singularities. A critical point is termed movable if its lo-
cation depends on the initial conditions chosen; thus, if
different initial conditions are employed, the singularity
in the solution “moves” in the complex plane. The possi-
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ble connection between the Painlevé property and the
“integrability” of a nonlinear system has been repeatedly
emphasized by Ablowitz, Ramani, and Segur,]4 whose
method we follow.

We first rewrite the coordinates and parameters of sys-
tem (1.5) in terms of dimensionless variables, introducing
the new quantities x, =p, x,=iq, xy=r, T=2Vt, where
the variable 7 will be assumed to take on complex values.
[These variables cause the initial density matrix to be
parametrized in the form p=1(I +P-0), with (x;,x,,x,)
as P and s being taken as 1.] The system then takes the
form

dr 1= 2 (4.1a)
d ’ ’
d_xzz—xl—axz—)(x‘x3 ) (4.1b)
d ! U

Ex3=—ax3+l’xlx2 , (4.1c)

where a’'=a/2V and X'=X/2V. We will now follow the
algorithm of Ablowitz, Ramani, and Segur'* that pro-
vides sufficient conditions for a given equation or system
to be of P-type. One assumes that the solutions can be
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FIG. 3. Scattering function S(w) presented as a function of w. In (a) X/4V=0.4 and a/2V takes the values 0.1 (curve a), 0.8
(curve b), and 4.0 (curve ¢). In (b) X/4¥V'=0.99 and in (c} it is 1.01 for the same values of a/2V as before. Finally, in (d) X/4V=1.6
with a/4V assuming the values 0.1 (curve a), 0.8 (curve b), and 6.0 (curve c).
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expanded around some possible singularity 7, and first
looks at the behavior of only the leading terms. There-
fore suppose that

X, =8;(T—To'+ -+, i=123. (4.2)
One easily obtains the following values:

pr=-1 py=-2=p,;,
with

S=Fip=—06,, 6;3=—pn, (4.3)

where u=2/X’'. The fact that the exponents in the lead-
ing terms of the solution to Egs. (4.1) are integers signifies
that the singularities that will be subsequently obtained
are not algebraic branch points. The next step in the in-
vestigation of the singularity structure requires that one
determine the “‘resonances” of the solution. Looking for
the next terms in the expansion of the solution we may
write

x\=Fipz '+6z2° 74,
Xy=tipz P46z T
Xy=—pz PGzt T

where z =7—71, To leading order in the §;, insertion of
these forms into the original system gives a homogeneous
algebraic system of three equations in three unknowns.
Vanishing of the determinant requires that

(s =2)(s —4)s +1)=0. (4.5)

The purpose of this procedure is twofold. First, the in-
teger values of the solutions tells us that any branch
points to be expected in the solution of the system are not
algebraic. The other is more subtle. Granted the validity
of a (Laurent) series expansion of the type already begun,
substitution of a complete series expansion into the sys-
tem will determine recursion relations that determine ex-
plicitly all the other solutions, with the exception of (at
least) one coefficient at those powers which (in the
language of Ablowitz, Ramani, and Segur) correspond to
resonances. The undetermined coefficients (at a power
corresponding to a positive, integral solution of the “res-
onance” equation) allow the constants of integration of
the system to be evidenced. (In a simple Taylor series ex-
pansion of the solution, as in the more usual series expan-
sions of the solutions of differential equations, the con-
stant simply appear as the first coefficient in the series.)
On the other hand, the root s = —1 simply corresponds
to the arbitrariness of the choice of the point 7,

Having determined the integral values of the resonance
powers, one would simply proceed to determine recursion
relations for all the rest of the coefficients. However,
there is one more undesirable possibility: there might
still be logarithmic branch points in the solutions. The
existence of logarithmic branch points will be signaled by
the inconsistency of the equations to determine the con-
stants of integration. Therefore, the last part of the pro-
cedure is to substitute, into the system of differential
equations, expansions of the solutions that are complete
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through the powers corresponding to all the solutions of
the resonance equation:

x,=Fipz '4a,4+a,z+ayz* +a 2+ -,

Xy=tiuz 4 bz 7 by bz 4 by - (4.6)

. _ - 2
Xy=—1uz 2—}—clz 1+c2+c3z+c4z‘+---

If there are no logarithmic branch points in the solu-
tions of the system, substitution of (4.6) into (4.1) should
determine the coefficients a;,b;,¢;, i =1,2,..., term by
term, and thus evaluate the series representation of the
solution of the system around any point in the complex 7
plane (provided that 7, is not an essential singularity).
During the process two arbitrary constants will be ob-
tained. Together with 7, these are the *‘constants of in-
tegration,” which are to be determined by the initial con-
ditions of the problem. Unfortunately, this particular
part of the analysis fails for our system of equations.
Sequential solution of the equations generated by (4.6)
gives reasonable solutions through the third step (s=2),
with one arbitrary constant generated at s=2. At the
value s=4, the solutions indicated by (4.6) are incon-
sistent, requiring that a=0 in order for their continua-
tion. To indicate this fact explicitly, we note that an ex-
pansion consistent through s=2 requires the addition, at
that point, of logarithmic terms in the expansion, giving
the following result (where ¢, and a, are the arbitrary
constants, one determined at each of the resonances):

x,=Fipz 'tiad' /X' Fi(1/X' +¢,)z
Fila' /2X)z2+ 23 a, 12 (a2 /5X )In(z)]+ - -+,
xy=Fipz PFi(1/X +¢,)Fila'/X')z
+z%[3a,t6i (a?/5X )n(2)]+ - -,
Xy=—puz 24c,+z Flia,+a'/2X' —1/2X'
—c,—X'c%/2
+Ma?/5X)In(z)]+ - - .

The presence of a logarithmic branch point in the solu-
tions indicates that the system (4.1) [or, equivalently,
(1.5)] does not possess the Painlevé property except for
the very special case of =0, i.e., in the complete absence
of damping, in which case the system is already known to
be integrable.’

V. CONCLUSIONS

The purpose of this paper is to study the effects of the
interplay of dissipation and nonlinearity in transport.
The specific system we analyze is a dimer; the formalism
we used to introduce dissipation is that of the well-known
stochastic Liouville equation,’”!* and the equation we
used to describe nonlinearity is the discrete nonlinear
Schrodinger equation.

Our results show that the system has a tendency to-
wards self-trapping, as in the undamped nonlinear dimer,
but that it reaches an equilibrium distribution for long
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times with equal probability on the two sites of the dimer,
no matter what the initial condition. The scattering spec-
trum of the system is seen to be similar to that in the ab-
sence of dissipation but shows the additional feature of
broadening. For large damping, the nonlinear features
are hidden by those contributed by dissipation.

Finally, we obtained a series solution for the equations
of motion of the nonlinear dimer and showed that they
do not possess the Painlevé property.
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