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A recent investigation has shown that the motion of a charged particle on a discrete lattice under the action of a time-dependent
electric field can exhibit a peculiar phenomenon involving the dynamic localization of the particle whenever the magnitude and
frequency of the applied field are in certain ratios to each other. The connection of this phenomenon to the familiar effect of
Bloch oscillations is studied by exploring the phenomenon in momentum space.

When a dc electric field is applied to a charged
particle moving in a perfectly periodic crystal at zero
temperature, the particle executes ac motion. In other
words, in the absence of scattering (from lattice im-
perfections or ion motions), a dc electric field pro-
duces an ac current rather than a dc current. This
effect is well-known [1-3]. It can be understood eas-
ily by following the evolution either in momentum
(k) space or in real space. If the particle initially oc-
cupies a k-state, the applied dc field causes the par-
ticle to move in k-space at a rate proportional to the
field magnitude. As it approaches the edges of the
Brillouin zone, its velocity is reduced as a result of
Bragg reflection, and, when it crosses the zone edge,
it reenters on the other side of the zone. The particle
velocity increases and decreases periodically. The re-
sult is cyclic motion and the current is ac. This effect
is identical in essence to the localization of a particle
initially occupying a single site state — Wannier state
— when under the action of a dc electric field. The
field lifts the degeneracy of the site states and the
consequent energy mismatch among the site states
hinders the motion from the initially occupied site
to its neighbours. The particle returns to the initally
occupied site repeatedly and the mean-square dis-
placement is bounded and periodic.

The above static localization effect is textbook
knowledge [ 1]. We have recently reported [4] a new

localization effect which occurs when the applied field
is not dc but varies sinusoidally in time. We found
that, if initially localized at a site, the particle will
generally escape that site under the action of an ap-
plied ac field of magnitude ¢ and frequency @ (as
in the field-free case) except in those cases in which
the ratio &, where &=eEa/#, is a root of the or-
dinary Bessel function Jy. In these special isolated
cases the particle finds itself localized (as in the dc
field case). Here, and in the rest of this Letter, the
lattice consedered is a one-dimensional infinite chain
with intersite distance a, the charge on the particle
is e, and the intersite matrix elements (overlap in-
tegrals), denoted by V below, are nearest-neighbour
in character. A study of the connection of this new
effect, which we have termed [4] “dynamic locali-
zation”, to the better known static localization effect
as viewed in k-space, and to the phenomenon of
Bloch oscillations [1], forms the content of this
Letter.

As explained in ref. [4], the hamiltonian of the
particle is given by

H()=VY {Im){m+1|+|m+1){m|}
—eEaf(t) Y m{|m)>{ml}, (1

where |m) represents a Wannier state localized on
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lattice site m, and f(¢) describes the time-depen-
dence of the electric field.

An immediate consequence of (1), which we will
find useful in our investigations below, is the form
of the velocity operator. Either by finding the com-
mutator of the hamiltonian H with the position
operator
x=y mlmy{m|,
or by working out the evolution as in ref. [4], it is
straightforward to show that the velocity operator is
given by X, vl k) (k| with

v, =2Vasin[k—én(H)]}, (2)

where
n(n=| asfts).
0

For no field applied, (2) yields the well-known for-
mula for the velocity matrix element in a tight-bind-
ing chain. In the presence of the field, it describes the
fact that an initial k-state remains a k-state under the
action of the field [4], rate of change of k being given
exactly by &f(1).

The key to the understanding of the dynamic lo-
calization effect in k-space and of its connection to
Bloch oscillations lies in the result that (m?3, the
mean-square-displacement on an initially localized
particle, is given by the sum over all the k-states in
the Brillouin zone, of the square of a quantity my
which may be regarded as the contribution of the state
|k> to the particle displacement:

(m*)= ; (mo)?, (3)

t

my = j ds v (s)= j ds 2Vasin[k—én(s)] . (4)
o

0

The proof of this results follows trivially on writing
the mean-square-displacement for arbitrary initial
conditions in the familiar form (see, e.g., €q. (2.5)
of ref. [5]) as the double time integral of the velocity
correlation function, using the fact that the initially
localized condition allows the reduction of the gen-
eral expression to
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]

(m?y= J j dt, de, Tro(z)v(t)
1]

0

t

=jjdnmzz<munwu»w>, (5)
0

k
0

and realizing from (2) that v(Z,) and v(t,) are di-
agonal in the k-representation.

Returning to (3) and (4), we sec that localization,
which corresponds to {m?) being bounded, will oc-
cur whenever the contribution m, to the particle dis-
placement is bounded for every k-state in the band.
An alternative way of expressing this statement is that
the occurrence of localization implies that the time
average (or time integral) of v, the velocity in the
k-state, must vanish for every k. Using (2), we write
v, explicitly as

(1/2Va)v, =sin k cos[ &n(t)]
—cos ksin[ &n(D)] , (6)

and observe that, when the applied field is sinuso-
idal, f(7) =cos wt, n(t) is given by (1/w)sin wt, and
the cosine and sine functions multiplying sink and
cos k respectively in (6) may be expanded in terms
of Bessel functions as

cos[(&/w) sin w!?]

=Jo(Elw)+2 Y Jop(8lw) cos(2pwt) , N

sin[(&/w) sin wt]

=2 Jo,_i(Elw) cos[(2p—Dat] . (8)
p

The p-summations in (7) and (8) run from 1 to co.
With the exception of Jo( 8/w), all the terms on the
right-hand sides of (7) and (8) oscillate around a
zero average value.

Egs. (6)—(8) show that the average of the velocity
u, will vanish when and only when the term J,y( /@)
in (7) vanishes, i.e. whenever the ratio &/ takes on
values equal to the roots of J,. In all other cases, the
constant term in the expansion (7) of

cos[( &/w) sin w!]

will make m, and the mean-square-displacement un-
bounded - as a result of the integration shown in (4)
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and (5) - and the particle will escape. This analysis
shows that dynamic localization in a perfect crystal
may be understood in k-space as arising whenever
the average velocity in every k-state vanishes as a re-
sult of the particular form of the dispersion relation
in the band and the time-dependence of the applied
field. This is the primary result of this Letter.

The above reasoning and eq. (6) may also be ap-
plied to two simpler cases. The first is the static lo-
calization case when the applied field is constant in
time. The function #(¢) is now ¢, both the cosine and
sine terms in (6) average to zero, the average of the
velocity in every k-state vanishes and the particle is
localized no matter what the magnitude of the ap-
plied field is (with only the requirement that it not
vanish). In this case, if the particle were to start from
a specific k-state, it would traverse the entire Bril-
louin zone and sample all k-states. The periodicity of
the band energy and therefore of v, ensures that the
average of v, is zero and that there is localization.

The second case which is instructive to analyze
with (6) is one in which the applied field follows a
square wave, i.e. one which is constant in magnitude
but whose sign is reversed every n/w seconds. For
this case f(¢) changes from 1 to —1 repeatedly, and
n(t) is a saw-tooth curve. The changes result in a
function with a non-vanishing time average except
if the following condition holds:

Elw=2,4,6, ... (9)
If (9) holds, the motion of the particle in the Bril-
louin zone proceeds under a perfect synchronization
of the Bloch oscillations characteristic of a constant
(dc) field and the sign reversals of the field. The re-

sult is dynamic localization.
The study of the above case of a square-wave ap-
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plied field makes quite clear the phenomenon of dy-
namic localization as viewed in k-space and its
connection with Bloch oscillations. For the square-
wave field, dynamic localization occurs whenever the
time-dependence of the applied field is such that one
or more complete Bloch oscillations are allowed to
take place in exactly half the period of the field. For
the sinusoidal field, the average of the magnitude of
the field is less than in the square-wave case. Con-
sequently the value of &/w has to be larger than in
(9). Indeed, writing down the roots of the Bessel
function explicitly we see that, for the sinuoidal field,
(9) is to be replaced with

élw =2.405, 5.520, 8.654, .... (10)

We stress in closing that dynamic localization in
the strictest sense will occur for a sinusoidal time-de-
pendent applied field only for a tight-binding chain,
i.e. for a sinusoidal dispersion relation. However, the
physical effect of a lowering of the mobility as the
ratio of the magnitude of the field to its frequency
approaches certain values will be present in all cases.
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